
Conga
User Guide

Conga version 3.0

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2017 by Dyalog Limited
All rights reserved.

Conga User Guide

Conga version 3.0
Document Revision: 20170627_300

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties ofmerchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
http://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.
Array Editor is copyright of davidliebtag.com
Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, Javascript™ and Java™ are registered trademarks of Oracle and/or its affiliates.
UNIX® is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark ofMicrosoft Corporation in the United States and
other countries.
macOS® and OS X® (operating system software) are trademarks of Apple Inc., registered
in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Contents

Preface iv
1 About This Document 1

1.1 Audience 1
1.2 Conventions 1

2 Introduction 3
3 Installation 4

3.1 Compatibility 4
3.2 Initialisation 4

4 Getting Started 6
4.1 Conga Objects 6

4.1.1 Conga Object Types 6
4.1.2 Conga Object States 8
4.1.3 Conga Object Modes 10

4.2 A Simple Conga Client 13
4.3 A Simple Conga Server 14
4.4 Command Mode 15
4.5 Parallel Commands 17

4.5.1 Multi-threading 19
4.6 Deflate HTTP Compression 20

4.6.1 HowHTTP Compression Works 20
4.6.2 Deflate Compression 21

5 Secure Connections 23
5.1 CA Certificates 24
5.2 Client and Server Certificates 25

5.2.1 Certificate Stores 26
5.2.2 Revocation Lists 26

5.3 Creating a Secure Client 26
5.4 Creating a Secure Server 28
5.5 Using the DRC.X509Cert Class 29

5.5.1 Certificate Chains 31
6 The Conga Workspace 33

6.1 Namespace: Samples 34
6.1.1 Function: Samples.Test* 34

6.2 Namespace: WebServer 35
6.2.1 Function: WebServer.Run 35

6.3 Namespace: RPCServer 36

Conga User Guide

revision20170627_300 i

6.3.1 Function: RPCServer.Run 37
6.4 Class: FTPClient 38
6.5 Namespace: TODServer 39

6.5.1 Function: TODServer.Run 39
A Technical Reference 41

A.1 DRC Return Codes 41
A.2 Function: DRC.Certs 42
A.3 Function: DRC.ClientAuth 42
A.4 Function: DRC.Close 43
A.5 Function: DRC.Clt 43
A.6 Function: DRC.Describe 46
A.7 Function: DRC.Error 47
A.8 Function: DRC.Exists 47
A.9 Method: DRC.Flate.Deflate 48
A.10 Method: DRC.Flate.Inflate 48
A.11 Method: DRC.Flate.IsAvailable 49
A.12 Function: DRC.GetProp 49
A.13 Function: DRC.Init 52
A.14 Function: DRC.Names 53
A.15 Function: DRC.Progress 54
A.16 Function: DRC.Respond 54
A.17 Function: DRC.Send 55
A.18 Function: DRC.ServerAuth 57
A.19 Function: DRC.SetProp 57
A.20 Function: DRC.Srv 59
A.21 Function: DRC.Tree 61
A.22 Function: DRC.Version 63
A.23 Function: DRC.Wait 63
A.24 Class: DRC.X509Cert 65

A.24.1 Instances of the DRC.X509Cert Class 67
A.25 Operator: Samples.HTTPCmd 69
A.26 Function: Samples.HTTPGet 71
A.27 Function: Samples.TestFTPClient 73
A.28 Function: Samples.TestSecureWebClient 73
A.29 Function: Samples.TestWebClient 75
A.30 Function: WebServer.Run 76

B Certificates 77
B.1 PEM File Format 77
B.2 Generating Certificates and Keys 77

C TLS Flags 81

Conga User Guide

revision20170627_300 ii

D Conga Libraries 83
E Error Codes 85
F Change History 87

F.1 Version 2.7 87
F.2 Version 2.6 87
F.3 Version 2.5 88
F.4 Version 2.4 88
F.5 Version 2.3 88
F.6 Version 2.2 89
F.7 Version 2.1 89

Index 91

Conga User Guide

revision20170627_300 iii

Preface

Conga version 3.0 contains a number of enhancements that were completed too late to
allow the documentation to be revised for inclusion with Dyalog version 16.0. Instead, a
separate document, the Conga User Guide – Supplement for Version 3.0, contains
preliminary information for the new features. Revised copies of the Conga documentation
will be worked on during the summer of 2017 and released online when available.

Although Conga version 3.0 contains many new features, it is designed to be upwards
compatible with Conga version 2.7 and earlier releases. This document accurately
describes the use of Conga version 3.0 except that a number of samples have been
removed from the distributed workspace conga.dws and new features are not included. If
your application requires any of the components that have been removed, or if you have
any other problems using this workspace, then a workspace called conga_v2.dws is
available from https://my.dyalog.com/lib/download.php?file=/conga/ws/conga_v2.dws.
The congav2_dws workspace contains all the old code, but loads the Conga 3.0 DLLs that
are provided with Dyalog version 16.0. Using that workspace, all of the examples and
samples in this manual should work as described. However, if you do decide to use this
workspace, Dyalog asks that you notify support@dyalog.com and inform us why you felt
this was necessary so that we can consider reinstating code and improve future releases.

The following components have been removed from the distributed conga.dws:
l The TODServer example has been completely retired.
l The FTPClient, along with many of the utilities that used to be found in the
HttpUtils and Samples namespaces, have been moved to new locations
(described in the Code Libraries Reference Guide).

l The RPCServer and WebServer examples have been replaced by new code that
uses new features of Conga version 3.0; these can be found in the
[DYALOG]/Samples/Conga directory and are described in the Conga User Guide –
Supplement for Version 3.0.

revision20170627_300 iv

Conga User Guide

http://docs.dyalog.com/16.0/Conga User Guide - Supplement.pdf
https://my.dyalog.com/lib/download.php?file=/conga/ws/conga_v2.dws
mailto:support@dyalog.com

1 About This Document

This document is a complete guide to Conga, Dyalog's framework for TCP/IP
communications. It describes the tools with which Conga can be used to create a variety
of clients and servers using protocols based on TCP/IP, including HTTP, HTTPS, FTP,
Telnet and SMTP. It covers Conga support for secure communications (using SSL/TLS) and
communication between APL processes (allowing them to exchange native APL data
directly). It also introduces the Conga workspace, which includes a comprehensive
collection of samples showing the implementation of various types of servers and clients,
and contains a technical reference of the namespaces, classes and functions provided
with Conga.

1.1 Audience
It is assumed that the reader has a reasonable understanding of Dyalog and server client
connection protocols; a working knowledge of HTTP/FTP/SMTP is needed to understand
the samples provided with the congaworkspace.

For information on the resources available to help develop your Dyalog knowledge, see
http://www.dyalog.com/introduction.htm.

1.2 Conventions
Unless explicitly stated otherwise, all examples in Dyalog documentation assume that ⎕IO
and ⎕ML are both 1.

Various icons are used in this document to emphasise specific material.

General note icons, and the type ofmaterial that they are used to emphasise, include:

Hints, tips, best practice and recommendations from Dyalog Ltd.

Information note highlighting material of particular significance or relevance.

revision20170627_300 1

Conga User Guide

http://www.dyalog.com/introduction.htm

Legacy information pertaining to behaviour in earlier releases of Dyalog or to
functionality that still exists but has been superseded and is no longer
recommended.

Warnings about actions that can impact the behaviour of Dyalog or have
unforeseen consequences.

Although the Dyalog programming language is identical on all platforms, differences do
exist in the way some functionality is implemented and in the tools and interfaces that are
available. A full list of the platforms on which Dyalog version 16.0 is supported is available
at www.dyalog.com/dyalog/current-platforms.htm. Within this document, differences in
behaviour between operating systems are identified with the following icons
(representing macOS, Linux, UNIX and Microsoft Windows respectively):

revision20170627_300 2

Conga User Guide

http://www.dyalog.com/dyalog/current-platforms.htm

2 Introduction

Conga (also known as the Dyalog Remote Communicator) is a tool for communication
between applications. It can transmit APL arrays between two Dyalog applications that
both use Conga (that is, both call functions within the DRC namespace), and it can
exchangemessages with many other applications, for example, HTTP servers (also known
as web servers), web browsers and other web clients/servers including Telnet, SMTP and
POP3.

Uses of Conga include, but are not limited to, the following:
l Retrieving information from – or uploading data to – the internet.
l Accessing internet-based services like FTP, SMTP or Telnet.
l Writing an APL application that acts as a Web (HTTP) Server, mail server or any

other kind of service available over an intranet or the internet.
l Implementing APL Remote Procedure Call (RPC) servers; these receive APL arrays

from client applications, process data and return APL arrays as the result.

Conga supports secure communication using TLS (Transport Layer Security), which is the
successor to SSL (Secure Sockets Layer). Conga makes it easy for APL developers to
embed client or server components in APL applications and simplifiers the process of
making remote calls in a multi threaded client environment.

Although Conga currently only uses the TCP protocol, other communication mechanisms
could be added in the future. Conga hides many of the details of TCP socket handling and
notifies the application of incoming data, connection events and errors so that all the
application needs to do is handle the data that arrives. Dyalog Ltd recommends Conga as
themechanism for handling TCP-based communications in preference to the now-
outdated TCPSocket object.

Conga is used in many Dyalog tools including MiServer (Dyalog's APL-based web server),
SAWS (the Stand-AloneWeb Service framework), the Dyalog File Server and isolates.

If you redistribute code that uses Conga, please see the Licences for third-party
components document in the [DYALOG]/Help directory of your installation.

revision20170627_300 3

Conga User Guide

3 Installation

Conga is implemented as a Microsoft Windows Dynamic Link Library or a UNIX/Linux
Shared Library. The library is loaded and accessed through the DRC namespace, which is
part of the congaworkspace; the congaworkspace also contains a number of sample
applications.

No installation is required – Conga is supplied with Dyalog.

3.1 Compatibility
All versions of Conga from version 2.0 onwards are:

l compatible with all supported Dyalog versions.
l compatible with each other.

When the server and client are both Conga objects, they:
l do not have to be running the same version of Conga.
l do not have to be running the same version of Dyalog.

However, standard Dyalog interoperability rules apply – any specific functionality that is
required (in Conga or Dyalog)must be available at both ends of the connection. For
details of the changes made in each Conga version, see Appendix F.

For compression to work, the client and server both need to support the same
compression scheme (see Section 4.6).

3.2 Initialisation
Before using any of the functions in the DRC namespace, the system needs to be
initialised by loading the library (Microsoft Windows DLL or UNIX Shared Library).

revision20170627_300 4

Conga User Guide

To initialise the system

1. Access the DRC namespace in the appropriate way:
l If you are experimenting with functionality before adding Conga to an

application, then load the congaworkspace:
)LOAD conga

...\ws\conga.dws saved Fri Jul 24 17:21:04 2015

l If you are writing an application whose behaviour should remain unchanged
irrespective of future changes to Conga, then copy the DRC namespace from
the congaworkspace into the application's workspace:

)COPY conga DRC
...\ws\conga.dws saved Fri Jul 24 17:21:04 2015

If an application is shipped that includes Conga, then the relevant
libraries will also need to be shipped. For more information, see Appendix
D.

2. Initialise the library:
DRC.Init ''

0 Conga loaded from: ...\conga27x64Uni

The examples throughout this document assume that the system has been initialised,
that is, the above steps have already been followed.

revision20170627_300 5

Conga User Guide

4 Getting Started

This chapter introduces Conga client and server objects and demonstrates their use
through simple examples.

The purpose and syntax of the functions and methods used in this chapter are detailed in
Appendix A.

4.1 Conga Objects
A Conga object is a named object created inside Conga but outside the workspace. Each
Conga object has specific properties that can be queried and/or set (some properties are
read-only).

Conga object names cannot exceed 32 characters in length and must not contain null
characters.

4.1.1 Conga Object Types

There are six possible types of Conga object – these are listed with their identifying object
type code in Table 4-1 (object type codes are used by several of the DRC.* functions in
Conga – see Appendix A).

Code Object Type Description

0 Root
The highest level object. The root object contains information
about the Conga installation; it is created with the DRC.Init
function.

Table 4-1: Conga object types

revision20170627_300 6

Conga User Guide

Code Object Type Description

1 Server*

A server object listens for connections from clients – the client can
be any TCP/IP client and does not have to be a Conga object. It
also receives, processes and responds to requests from
connections.

2 Client*
A client object connects to a server, sends requests to it and
receives responses from it; the server can be any TCP/IP server
and does not have to be a Conga object.

3 Connection
A server object can respond to multiple client connections; a
connection object maintains information pertaining to each client
connection.

4 Command
A command object represents an individual request (from a client)
or response (from a server). Command objects only exists for
servers and clients in Commandmode (see Section 4.1.3).

5 Message
Message objects are created by servers using the DRC.Progress
function and sent to client objects. Message objects only exist for
servers and clients in Commandmode (see Section 4.1.3).

Table 4-1: Conga object types (continued)

* A client is said to be using Conga if it is communicating through a client instance that
was set up using the DRC.Clt function (see Section A.5); a server is said to be using
Conga if it is communicating through a server instance that was set up using the DRC.Srv
function (see Section A.20). The other end of the connection can also be using Conga or it
can be a non-Conga object that understands TCP/IP (for example, a web browser or web
server).

The ERD (Entity-Relationship Diagram) in Figure 4-1 shows how servers and clients are
related to each other and to other Conga objects. At least one of the server side or client
sidemust be using Conga.

revision20170627_300 7

Conga User Guide

Figure 4-1: Conga object ERD (standard crow's foot notation)

Communication between a server's connection object and a client object depend on the
connection mode (see Section 4.1.3). The ERD in Figure 4-2 shows how the remaining two
Conga object types relate to the connection and client objects – this is only valid when
both the server and client are in Commandmode. The sequence of events starts when
the client sends a command through the connection to the server; optionally, the server
sends messages through the connection to the client before sending a final response to
the command.

Figure 4-2: Communication ERD in Command mode (standard crow's foot notation)

For more information on connection modes, see Section 4.1.3 and Section 4.4.

4.1.2 Conga Object States

Each Conga object has a state, that is, temporary condition in which it exists as it
progresses through its cycle from creation to deletion. The possible states and the Conga
object types (Section 4.1.1) that can exist in each of these states are detailed in Table 4-2.

revision20170627_300 8

Conga User Guide

Code Object State
Conga Object

Types Description
0 1 2 3 4 5

0 New x x x x x x
Transient state that the object exists in
after it is created but before it has been
initialised.

1 Incoming x
A connection has been established but
a Connect event has not yet been
received.

2 RootInit x

The root object exists and is connected
to the Conga library (Microsoft
Windows DLL or UNIX/Linux Shared
Library).

3 Listen x
The server is listening for incoming
connection attempts.

4 Connected x x
The client/connection is connected to
its connection/client peer.

5 APL x x

The thread that handles socket
communications has a full buffer and
no further processing can occur until
the application calls the DRC.Wait
function.

6 ReadyToSend x x Data is ready to be sent.

7 Sending x x Sending data.

8 Processing x
The command has been passed to the
server but no response has been
issued.

9 ReadyToRecv x x Waiting for data.

10 Receiving x x Receiving data.

Table 4-2: Conga object states and the object types that can exist in those states

revision20170627_300 9

Conga User Guide

Code Object State
Conga Object

Types Description
0 1 2 3 4 5

11 Finished x x x x x x
All data has been
transmitted/received, connections
closed and commands finished.

12 MarkedForDeletion x x x x x x The Conga object is ready for deletion.

13 Error x x x x x An error has occurred.

14 internal - - - - - - internal

15 internal - - - - - - internal

16 SocketClosed x x The socket has been closed.

17 APLLast x x

The connection has been closed but
uncollected data still exists in the
thread that handles socket
communications.

18 SSL x x
The client/connection is negotiating an
SSL connection with its
connection/client peer.

Table 4-2: Conga object states and the object types that can exist in those states
(continued)

4.1.3 Conga Object Modes

Conga clients and servers support five different modes for connection, that is, formats in
which data can be transmitted:

l Text

Allows transmission of character strings. Character strings can only comprise
characters with Unicode code points less than 256. To transmit characters outside
this range, Dyalog Ltd recommends that you either use UTF-8 character encoding
(for information on this, see ⎕UCS in theDyalog APL Language Reference Guide) or
switch to Rawmode and convert the character string to the appropriate format
(for example, by applying ⎕UCS).

revision20170627_300 10

Conga User Guide

l BlkText

As Textmode, but each data transmission is considered as a block. If a block
exceeds themaximum size (as defined by the BufferSize parameter of the
DRC.Clt/DRC.Srv function) then the peer object receiving the transmission can
reject it. Each block includes a header stating the:

o block length: 32-bit integer giving the exact length of the block. Determined
by the network/operating system.

o magic number (optional): 32-bit integer used to check that the data has not
been corrupted. Set using the DRC.Clt/DRC.Srv function (the Magic
parameter).

Each block is assigned the event name Block. If the connection closes before all
blocks have been processed, then the final block tobe processed is assigned the
event name BlockLast. The third element returned by the DRC.Wait function
indicates the event name (see Section A.23).

Unless explicitly specified otherwise, information about Textmode can be assumed
to apply to BlkTextmode too. Only valid when both the server and client are using
Conga.

l Raw

Similar to Textmode, except that data is represented as integers in the range 0 to
255 (for coding simplicity, negative integers -128 to -1 are also accepted and
mapped to 128-255).

l BlkRaw

As Rawmode, but each data transmission that exceeds themaximum size (as
defined by the BufferSize parameter of the DRC.Clt/DRC.Srv function) is
chunked into blocks. Each block includes a header stating the:

o block length: 32-bit integer giving the exact length of the block. Determined
by the network/operating system and cannot exceed the Buffersize.

o magic number: 32-bit integer unique to the blocks in a single data
transmission; used to identify blocks in the same transmission. Set using the
DRC.Clt/DRC.Srv function (the Magic parameter).

If data is too large to fit into a single block, then multiple blocks are created; each
block is assigned the event name Block. If the connection closes before all blocks
have been processed, then the final block in the transmission is assigned the event
name BlockLast. The third element returned by the DRC.Wait function
indicates the event name (see Section A.23).

revision20170627_300 11

Conga User Guide

Unless explicitly specified otherwise, information about Rawmode can be assumed
to apply to BlkRawmode too. Only valid when both the server and client are using
Conga.

l Command

Each transmission is a complete APL object in a binary format. This is the default
mode. Only valid when both the server and client are using Conga. For more
information on Commandmode, see Section 4.4.

A client and server can only exchange data if they are running in compatible modes.
Specifically, a Commandmode client must be connected to a Commandmode server and
a Textmode or Rawmode client must be connected to a Textmode or Rawmode server;
BlkTextmode and BlkRawmode are interchangeable with Textmode and Rawmode as
long as the requisite header (containing the field length and magic number) is added.

Textmode and Rawmode are typically used when only one end of the connection is an
APL application.

Command mode is the optimal way for APL clients and servers to communicate with each
other, because:

l the internal representation is the binary format used by APL; this is more compact
that a textual representation.

l numbers can be transmitted without having to be formatted and interpreted.
l no buffer size needs to be declared.

In Commandmode, BlkTextmode or BlkRawmode, each transmission comprises an
entire APL array or block of data; the DRC.Wait function does not report incoming data
until the entire APL array or block of data has arrived. In Textmode and Rawmode, byte
streams are transmitted – in Textmode these are translated to a character vector on
receipt, in Rawmode, integers between 0 and 255 are returned; the DRC.Wait function
reports incoming data each time a TCP packet arrives or when the receive buffer is full.
The recipient may need to buffer incoming data in the workspace and analyse it to
determine whether a completemessage has arrived.

In Text and Rawmodes, an EOM termination string can be set. In this situation, the
DRC.Wait function terminates on receipt of the specified termination string. If an empty
termination string is specified, then the DRC.Wait function terminates when the buffer
contains BufferSize bytes (see Section A.5 and Section A.20). If an EOM termination
string is not specified, then the DRC.Wait function returns data each time a TCP packet is
received. If a TCP packet is larger than BufferSize bytes then the data is returned in
blocks of BufferSize bytes.

revision20170627_300 12

Conga User Guide

4.2 A Simple Conga Client
A Conga client establishes contact with a service that is already running and listening on a
pre-determined port at a known TCP address. The service could be an APL application
that has created a Conga server or it could be any application or service that provides
services through TCP sockets. For example, most UNIX systems (and many Microsoft
Windows servers) provide a set of simple services like a Time of Day (TOD) service or a
Quote of the Day (QOTD) service, both of which respond with a text message as soon as a
connection is made to them; once themessage has been sent, they immediately close the
connection.

The function DRC.Clt can be used to create a Conga client. In the following example, this
function is called with five elements in its right argument:

l the name to be used for the client object (C1)
l the IP address or name of the server machine providing the service (localhost)
l the port on which the service is listening (13 – the TOD service)
l the type of socket (Text)
l the size (in bytes) of the buffer that should be created to receive data (1000)

DRC.Clt 'C1' 'localhost' 13 'Text' 1000
1111 ERR_CONNECT_DATA /* Could not connect to host data port */

The error message that is generated follows the syntax for all error codes generated by
functions in the DRC namespace (see Section A.1), that is, it is a vector in which:

l [1] is a return code (see Section A.1)
l [2] is the error name
l [3] is, optionally, additional information about the error.

The reason that this DRC.Clt function call failed with error code 1111 is that it was called
on Microsoft Windows and Windows does not usually have a TOD service running. This
issue can be resolved in any of the following ways:

l Enable the service on localhost. This can be done by going to Control Panel >
Programs and Features > Turn Windows features on or off and selecting the
Simple TCPIP services (i.e. echo, daytime etc) checkbox. Reboot, then rerun the
DRC.Clt function call:

DRC.Clt 'C1' 'localhost' 13 'Text' 1000
0 C1

The result code of zero indicates that the client was successfully created (any other
code indicates failure).

revision20170627_300 13

Conga User Guide

l Call a different server machine that does provide a TOD service, for example:

DRC.Clt 'C1' 'myLinuxBox' 13 'Text' 0
0 C1

The result code of zero indicates that the client was successfully created (any other
code indicates failure).

l Write a TOD service for localhost (see Section 6.5)

After the client object has been successfully created, incoming data can be received.
Receiving data from the server involves calling the DRC.Wait function with the name of
the client. For example:

]DISP DRC.Wait 'C1'
┌→┬──┬─────┬───────────────────┐
│0│C1│Block│15:01:44 07/10/2015│
│ │ │ │ │

└─┴─→┴────→┴──────────────────→┘

The returned message is a vector in which:
l [1] is the return code
l [2] is the object name
l [3] is the type of event (see A.23)
l [4] is data associated with the event

The client object can now be closed (good practice):
DRC.Close 'C1'

0

4.3 A Simple Conga Server
The TOD service referred to in Section 4.2 is a very simple server and can be implemented
by calling the TODServer.Run function in the conga workspace to create a server object
(for the code of this function, see Section 6.5.1). The TODServer.Run function enters a
loop where it waits for connections; this means that, to be able to experiment with using
this service without starting a second APL session, it should be started using the Spawn
operator (&) so that it runs in a separate thread:

TODServer.Run & 13
TOD Server started on port 13

revision20170627_300 14

Conga User Guide

For this to work on theMicrosoft Windows operating system, the TOD service
must be disabled (this can be done by going to Control Panel > Programs and
Features > Turn Windows features on or off and unselecting the Simple TCPIP
services (i.e. echo, daytime etc) checkbox, then rebooting).

The right argument in this function call is the port number; if a TOD service is already
running on port 13, then an error message is returned and a different port must be used
for the new service.

A client object can now be created, data received and the client object closed:
DRC.Clt 'C1' 'localhost' 13 'Text'

0 C1

DRC.Wait 'C1'
0 C1 Block 10:09:03 12-10-2015

DRC.Close 'C1'
0

The TOD server created by calling the TODServer.Run function is not restricted to only
respond to Dyalog applications using Conga – it can be used by any program that is
written to use a TOD service.

The server can be stopped as follows:
TODServer.DONE←1

TOD Server terminated.

4.4 Command Mode
Section 4.2 and Section 4.3 used connections in Textmode, which are appropriate for
most web applications. Even when remote procedure calls aremade over the internet,
with arguments and results containing arguments that are not simply text strings, the
parameters are usually encoded using SOAP/XML, which is a text-based encoding.

The TOD server created by calling the TODServer.Run function in Section 4.3 can be
used by any program that is written to use a TOD service. It could be restricted to only
respond to Dyalog applications using Conga by converting it to use Commandmode –
doing this means that it will return the time as a 7-element array in ⎕TS format.

revision20170627_300 15

Conga User Guide

The conversion to Commandmode is done by making the following changes to the
TODServer.Run function code given in Section 6.5.1:

l [4] Remove 'Text' from the end of the line (Command is the default).
l Replace lines [13], [14] and [15]with the following:
[13] :Case 'Connect' ⍝ Ignore
[14] :Case 'Receive'
[15] {}##.DRC.Respond obj ⎕TS

Unlike the Textmode TOD service, a server in Commandmode cannot initiate the
transmission of data when the connection is made, but can only respond to a request
from a client.

In the above changes to the TODServer.Run function code, the :Case 'Connect'
statement at line [13] does not have any associated code. However, code could be
added here so that the TOD server could (for example) record connections. Without any
code here, the TOD server responds with the current timestamp irrespective of the
content of the request.

In Text/Rawmode, client and server can both initiate data transfer by calling the
DRC.Send function (see Section A.17) – there is no concept of a request/respond
protocol at the Conga level, although implementing an HTTP protocol over the
connection can add such a protocol at the application level. However, in Commandmode
(and in BlkRawmode and BlkTextmode), Conga has an in-built protocol; communication
on a connection is synchronous and consists of discrete commands. Each command
comprises a request from the client followed by a response from the server; the server
cannot initiate an unrequested transfer of data. The request message from the client and
responsemessage from the server are linked by an identifier (this is not the case in other
modes). This means that, although the DRC.Send function can be used to send data
from a client in Commandmode, a different function must be used to send data from a
server in Commandmode – the DRC.Respond function (see Section A.16). The server can
also call the DRC.Progress function (see Section A.15); this sends progress messages to
the client while the server is processing a command, allowing the client to show the user a
progress bar or other status information.

Themodified TOD server can now be started. Ideally it should be started on a port other
than port 13, so that it is not confused with a standard TOD server (if required, both the
original and modified TOD servers could be run at the same time, in different threads):

TODServer.Run&913
TOD Server started on port 913

revision20170627_300 16

Conga User Guide

A Commandmode Dyalog client of this TOD server can now be created and retrieve a
numeric timestamp from the server:

DRC.Clt 'C1' 'localhost' 913
0 C1

DRC.Send 'C1' ''
0 C1.Auto00000000

The first element of the argument to the DRC.Send function can be either a client name
or a connection name:

l if a client name is supplied (as in this example) then Conga generates a connection
name and returns it as result element [2] in the format
clientname.connectionname (in this example, C1.Auto00000000).

l if a connection name is supplied, then Conga returns it as result element [2].
DRC.Wait 'C1'

0 C1.Auto00000000 Receive 2015 10 19 9 36 48 845

Result element [4] is now a 7-element integer vector rather than a formatted timestamp;
this is more performant on an APL client, but means that the TOD server is no longer
usable by other TCP client programs that expect a Textmode TOD server.

Unlike the Textmode TOD server, the Commandmode TOD server does not close the
connection after sending a timestamp. This means that a second timestamp can be
retrieved from the server (in this example the DRC.Wait function includes a maximum
waiting time of 5 seconds):

DRC.Send 'C1' ''
0 C1.Auto00000001

DRC.Wait 'C1' 5000
0 C1.Auto00000001 Receive 2015 10 19 9 37 28 581

4.5 Parallel Commands
Although the Commandmode protocol is synchronous, more than one command can be
active at the same time – it is not necessary to wait for the response to one command
before the next command is sent. In addition, multiple commands can be started and the
results retrieved in any order.

revision20170627_300 17

Conga User Guide

EXAMPLE:

(In this example command names are specified, whereas in Section 4.4 the command
namewas auto-generated)

DRC.Send 'C1.TS1' ''
0 C1.TS1

DRC.Send 'C1.TS2' ''
0 C1.TS2

DRC.Wait 'C1.TS2' 1000
0 C1.TS2 Receive 2015 10 19 9 38 7 957

DRC.Wait 'C1.TS1' 1000
0 C1.TS1 Receive 2015 10 19 9 37 57 965

The timestamps show that the TS1 command was executed before the TS2 command
even though the results were retrieved in the reverse order.

The Commandmode protocol allows multiple APL threads to work independently. A
request message from the client and the associated responsemessage from the server
are linked by a command name; this means that any APL thread can wait for the result of
a command, as long as it knows the command name. Multiple APL threads can share the
same server connection; one APL thread can send a command and then dispatch a new
APL thread to wait for and process the result of that command.

Command names can be reused as soon as the result has been received (but not before).

EXAMPLE:

Using client C1 and themodified TOD server created in Section 4.4:

DRC.Send 'C1.TS1' ''
0 C1.TS1

DRC.Send 'C1.TS2' ''
0 C1.TS2

{⎕TID,DRC.Wait ⍵ 1000}&¨ 'C1.TS1' 'C1.TS2'
2 0 C1.TS1 Receive 2015 11 16 11 25 28 850
3 0 C1.TS2 Receive 2015 11 16 11 25 32 474

This shows the asynchronous execution of a dynamic function; each of the two
commands TS1 and TS2 calls the DRC.Wait function in a separate thread. Each function
call returns the thread number and the result. Calls to the DRC.Wait function are thread
switching points, which means that threads can be held while other threads continue
execution.

revision20170627_300 18

Conga User Guide

4.5.1 Multi-threading

Conga supports multi-threaded applications; the ability to have a program work as both
client and server simultaneously, without blocking other threads, has been an integral
part of its design. All calls to Conga are implemented as asynchronous calls to an external
library (Microsoft Windows DLL or UNIX/Linux Shared Library).

EXAMPLE:

The RPCServer namespace contains an example of a server working in Commandmode
(see Section 6.3) – this RPC server can execute APL statements in the server's workspace
and return the results to client applications. Calling the Samples.TestRPCServer
function starts the RPC server and spawns a number of APL threads; each APL thread
makes a remote procedure call to a function in the RPCServer namespace. For each of
the remote procedure calls, the server spawns a newAPL thread; each of these newAPL
threads calls the RPCServer.Process function to handle the call to the function in the
RPCServer namespace.

The status bar at the bottom of the Sessionwindow includes a field that displays
the number of APL threads currently running (minimum value is 1). As the
Samples.TestRPCServer function runs, the number of threads can be seen to
increase before reverting to its initial value.

Additional web services, accessed through Conga, can be included by extending the
RPCServer.Process function. These services can be external to the workspace or can
run in the sameworkspace as everything else – in the latter situation each additional web
servicemust be launched in a separate APL thread (as shown in Section 4.3). If the
services are external to the workspace, then Conga uses multiple operating system
threads to handle TCP communications; this is independent of the interpreter. Each result
is returned to the APL thread that is waiting for it.

When developing an application, it is important to ensure that there is an APL thread
waiting on each server object that has been created (otherwise requests will not be
serviced). Having more than one APL thread waiting on the same object is not
recommended – it can lead to unpredictable behaviour. For example:

Thread 1: DRC.Wait 'S1' 1000
Thread 2: DRC.Wait 'S1' 1000

could result in problems, whereas

Thread 1: DRC.Wait 'S1' 1000
Thread 2: DRC.Wait 'S2' 1000

is fine; this is determined by the application developer.

revision20170627_300 19

Conga User Guide

If a thread sustains an untrapped error then, by default, its execution is suspended
and any other threads are paused; resuming execution of a suspended function
only restarts the suspended thread. If the Session appears to lock while testing the
multi-threading functionality, selecting themenu item Threads > Resume all
Threads reactivates any paused threads.

4.6 Deflate HTTP Compression
Deflate is one of several content encoding schemes that can be used to implement HTTP
compression; all major web browsers and web servers support deflate.

Although deflate can be used as a general data compression utility, its importance to
Conga is its ability to provide HTTP compression. HTTP compression means that a smaller
quantity of data needs to be transmitted across the network, thereby improving
throughput between HTTP clients and servers. Typically a client will be a web browser (for
example, Microsoft Internet Explorer, Google Chrome, Mozilla Firefox or Apple Safari) and
a server will be a web server (for example, Microsoft IIS, Apache or IBM WebSphere). The
DRC.flate class contains methods that provide support for deflate data compression,
enabling Conga-based clients and servers to implement and support HTTP compression.

With a certain amount of adjusting from unsigned to signed integers, the
DRC.flate.Deflatemethod produces the same result as calling 2(219⌶).

4.6.1 How HTTP Compression Works

For HTTP compression to work, the client and server both need to support the same
compression scheme. They validate this in the following way:

1. The client informs the server of the compression schemes that it supports by
including them as a comma-delimited list in the Accept-Encoding HTTP header
that is sent with the request. The two predominant compression schemes
currently are gzip and deflate.

2. The server receives the request from the client and examines the contents of the
Accept-Encoding header. If the server also supports one of the compression
schemes listed then it evaluates whether to encode the body of its response using
that scheme. The server is not required to use any of the content encoding
schemes in the Accept-Encoding header; if it does, then it informs the client
which scheme it used in the Content-Encoding HTTP header that is sent with
the response.

3. The client receives the response from the server and examines the contents of the
Content-Encoding header (if found). It then decompresses the body of the
response using that scheme.

revision20170627_300 20

Conga User Guide

4.6.2 Deflate Compression

Before implementing deflate compression, themode of the clients and servers that will
use deflate needs to be decided. Themode selected should be determined by the type
and quantity of data to be compressed:

l Textmode is more convenient for the parsing and processing of the HTTP message
wrapper.

l Rawmode is better suited for passing data to the DRC.flate.Deflate and
DRC.flate.Inflatemethods.

The open-source library that is used to implement deflate compression, zlib, prepends a
2-byte header (usually 120 156), to the compressed data. Microsoft's Internet Explorer
does not process these bytes correctly; themajority of web servers, therefore, tend to
strip them off. This means that extra steps are required when implementing a client or
server that uses deflate compression.

For a client that uses deflate compression:
1. In the request message, inform the server that deflate compression is supported

by adding the following to the HTTP headers:
Accept-Encoding: deflate

2. When a response is received from the server:
i. check its HTTP headers for Content-Encoding. If this header is found and

contains deflate, then prepend 120 156 to the responsemessage before
calling the DRC.flate.Inflatemethod.

ii. call the DRC.flate.Inflatemethod to decompress the data. This takes
an integer vector of values in the range 0-255 as its right argument, which
works well when the client is in Rawmode. However, if the client is in Text
mode, then the call should be amended as follows to covert the data to a
suitable form:
'UTF-8' ⎕UCS DRC.flate.Inflate 256|83 ⎕DR data

For a server that supports deflate compression:
1. In the request message from the client, check whether the following HTTP header is

present:
Accept-Encoding: deflate

2. Assess whether HTTP compression is appropriate. For small responses, the CPU
overhead to perform the compression could outweigh the gains of transmitting
less data. In addition, data that is already in a compressed format (that is, files such
as .zip and .gz files and graphics formats such as .jpg/.jpeg and .gif) is unlikely to
be able to be compressed further.

3. If the header is present and compression is appropriate, then:
i. in the responsemessage, inform the client that deflate compression has

been used by adding the following to the HTTP headers:
Accept-Encoding: deflate

revision20170627_300 21

Conga User Guide

ii. call the DRC.flate.Deflatemethod to compress the data. This takes an
integer vector of values in the range 0-255 as its right argument, so works
well when the server is in Rawmode. However, some data (such as web
pages) are sent more efficiently in Textmode – this means that some
conversion needs to be performed.

The following code is a modified sample from MiServer, Dyalog's APL based
web server(see https://www.github.com/Dyalog/MiServer). It shows how
the 2-byte header (120 156) is dropped from the result:

∇ (rc raw)←Compress buf;toutf8
:Implements Method ContentEncoder.Compress
toutf8←{3=10|⎕DR ⍵: 256|⍵ ⋄ 'UTF-8' ⎕UCS ⍵}
:Trap 0

⍝↓↓ drop of 789C header (IE cannot process it)
raw←{(2×120 156≡2↑⍵)↓⍵}#.DRC.flate.Deflate toutf8 buf
rc←0

:Else
(rc raw)←1 ⎕DM

:EndTrap
∇

revision20170627_300 22

Conga User Guide

https://www.github.com/Dyalog/MiServer

5 Secure Connections

Conga supports secure connections using SSL/TLS protocols. Secure connections allow
client and server applications to:

l verify the identity of the partner that they are connected to.
l encrypt messages so that the contents cannot be deciphered by a third party,

even when using text or rawmode connections.
l ensure that messages have not been tampered with by a third party during

transmission.

SSL/TLS is a generic term for a set of related protocols used to add confidentiality and
authentication to communications channels such as sockets. TLS (Transport Layer
Security) is the successor to SSL (Secure Socket Layer) and is defined by the IETF and
described in RFC 2246. There are only minor differences between the two protocols, so
their names are often used interchangeably.

Recommended resources:
l http://technet.microsoft.com/en-us/library/cc784450(WS.10).aspx discusses the

history, differences, benefits, etc. of SSL/TLS
l http://developer.mozilla.org/en/docs/Introduction_to_Public-Key_Cryptography

provides an overview of the public key cryptography techniques used in SSL/TLS;
the sections on the SSL protocol and CA (certificate authority) certificates are
relevant for anyone who would like to make use of secure communications.

l http://en.wikipedia.org/wiki/X.509 includes an introduction to how X.509
certificates and certificate authorities are used to establish trust.

To use SSL/TLS, Conga needs to be passed the necessary certificate and public key files
when client and server objects are created.

Once a secure connection has been established, the same functions/methods are used to
send and receive data (and with the same arguments) as when using a non secure
connection.

revision20170627_300 23

Conga User Guide

http://technet.microsoft.com/en-us/library/cc784450(WS.10).aspx
http://developer.mozilla.org/en/docs/Introduction_to_Public-Key_Cryptography
http://en.wikipedia.org/wiki/X.509

5.1 CA Certificates
A certificate authority (CA) is a third party who is trusted by the parties at each end of a
secure communication. The CA certifies that the named issuer of a certificate is the owner
of the public key included within that certificate; the party at one end of a secure
communication can then verify the identity of the party at the other end (known as the
peer) using their certificate.

Verifying a CA's signature on a certificate requires having access to the CA's public
certificate (often called a root certificate). Conga can be used to securemany different
types of system, and can require multiple (and sometimes private) root certificates from
several CAs.

All public root certificates that are located and downloaded for use with Conga should be
placed in a single root certificate directory. The DRC.SetProp function can be used to
inform Conga of the location of this directory. For example, the sample root certificates
supplied with Conga can be used by entering:

DRC.SetProp '.' 'RootCertDir' (Samples.CertPath,'ca')
0

(The Samples.CertPath function returns the location of the TestCertificates folder.)

Table 5-1 lists the download pages for root certificates for themost widely used CAs. The
main root certificates for all these are supplied with Conga and can be found in
[DYALOG]/PublicCACerts. However, most CAs have additional certificates available for
download, some of which are application-specific; the latest certificates can be
downloaded from the CA's websites.

Authority Download Root Certificates From...

VeriSign,
Geotrust
& Thawte

http://www.verisign.com/support/roots.html

Comodo http://www.comodo.com/repository/

GoDaddy
& ValiCert https://certs.godaddy.com/Repository.go

Cybertrust http://cybertrust.omniroot.com/support/sureserver/rootcert_ap.cfm

Entrust http://www.entrust.net/developer/index.cfm

Table 5-1: Root Certificates for the most widely-used CAs

revision20170627_300 24

Conga User Guide

http://www.verisign.com/support/roots.html
http://www.comodo.com/repository/
https://certs.godaddy.com/Repository.go
http://cybertrust.omniroot.com/support/sureserver/rootcert_ap.cfm
http://www.entrust.net/developer/index.cfm

Authority Download Root Certificates From...

CAcert http://www.cacert.org/index.php?id=3

GlobalSign https://www.globalsign.com/support/root-certificate/osroot.htm

IPS
Servidores

http://www.ips.es/Declaraciones/NuevasCAS/NuevasCAS.html
The root certificate is not included in [DYALOG]/PublicCACerts.

Table 5-1: Root Certificates for the most widely-used CAs (continued)

Conga recognises files with one of the extensions .cer, .pem or .der as certificates. These
files must contain data in either PEM or DER format. See Appendix B for more information
and instructions on how to create certificate files.

5.2 Client and Server Certificates
Client and server certificates are used to verify the identity of themachines at each end of
a secure connection (peers). Conga uses X.509 certificates to establish the identity of the
peer in a TLS/SSL connection. An X.509 certificate contains information about the
certificate subject and the certificate issuer (the CA that issued the certificate), including
details of the public key algorithm and the issuer's digital signature.

Dyalog includes a set of test certificates that can be used to test SSL support – these are
used by the TestSecure* functions in the Samples namespace (see Section 6.1.1). The
test certificates are found in [DYALOG]/TestCertificates, which has three subfolders called
ca, client and server. These test certificates can be used for testing your own code, but
must not be used in production code. The provided certificates are:

l TestCertificates/ca/ca-key.pem
The private key for the test CA. Used to sign the client/server and CA certificates. As
this is distributed with Conga, no certificate that relies on this can be considered
truly secure.

l TestCertificates/ca/ca-cert.pem
The public certificate for the test CA. Used to authenticate the client/server
certificates.

l TestCertificates/ca/DyalogCaPublic.pem
The public certificate for the test CA for https://ssltest.dyalog.com/, a Dyalog
supplied test site used by the Samples.TestSecureWebClient function. It uses
a different CA key to the one used by TestCertificates/ca/ca-cert.pem.

l TestCertificates/client/client-cert.pem and client-key.pem
The certificate/key pair used for sample clients.

l TestCertificates/server/server-cert.pem and server-key.pem
The certificate/key pair used for sample servers.

revision20170627_300 25

Conga User Guide

http://www.cacert.org/index.php?id=3
https://www.globalsign.com/support/root-certificate/osroot.htm
http://www.ips.es/Declaraciones/NuevasCAS/NuevasCAS.html
https://ssltest.dyalog.com/

5.2.1 Certificate Stores
This only applies when running on theMicrosoft Windows operating system and is
limited to client-side certificates.

Certificates can be stored in common repository known as a certificate store. Conga
supports the ability to read certificates from theMicrosoft certificate store (both client
and server must be running on Microsoft Windows).

5.2.2 Revocation Lists

Conga does not support the use of Certificate Revocation Lists. However, this
functionality could be added in a future version if required.

5.3 Creating a Secure Client
A client must be defined as secure when it is created – it is not possible to convert
an existing non-secure client into a secure client.

Conga creates secure clients by passing certificate and key information to the DRC.Clt
function – this should be done through the DRC.X509Cert class.

EXAMPLE – ASSUMES SECURE SERVER ALREADY ESTABLISHED

cert←⊃DRC.X509Cert.ReadCertFromFile'path/client/client-
cert.pem'

cert.KeyOrigin←'DER' ('path/client/client-key.pem')
certs←('X509' cert)('SSLValidation' 16)
DRC.Clt 'C1' 'localhost' 713 'Text', certs

0 C1

In this example, the first line of code uses the ReadCertFromFilemethod in the
DRC.X509Cert class to read the certificate called client-cert.pem and record all of its
information in a new instance of the X509Cert class. The second line specifies the location
of the client-key.pem file, which contains the private key. The third line creates a variable
comprising the parameters required for the creation of the secure client and the fourth
line includes this information when creating the secure client.

Alternatively, the locations of the certificate and key files can be explicitly specified:
certs←⊂('PublicCertFile' ('DER'

('path/client/clientcert.pem')))
certs,←⊂('PrivateKeyFile' ('DER' ('path/client/client-

key.pem')))
certs,←⊂('SSLValidation' 16)

revision20170627_300 26

Conga User Guide

DRC.Clt 'C1' 'localhost' 713 'Text', certs
0 C1

where PublicCertFile and PrivateKeyFile identify the files containing the public
certificate and private key respectively.

The SSLValidation parameter that is included when creating a secure client indicates
the TLS flags that control the certificate checking process (see Appendix C for a complete
list of TLS flag values). A typical flag value for a client connection is 16 (accept the server
certificate even if its hostname does not match the one it was trying to connect to).

A certificate is not mandatory when creating a secure client; many secure servers accept
connections from clients without certificates (known as anonymous connections). In this
situation, although the server cannot verify the identity of the client, the connection is
still encrypted and safe from tampering. Most commercial web sites use anonymous
connections as they mean that sensitive data is protected when transmitted over the
internet but customers are not required to have a digital signature. To enable an
anonymous connection, an empty certificate can be created as follows:

'X509' (⎕NEW DRC.X509Cert)
X509 #.[X509Cert]

EXAMPLE

args←'C1' 'ssltest.dyalog.com' 713 'Text' 100000
args,←⊂('X509' (⎕NEW DRC.X509Cert))
DRC.Clt args

0 C1

This is successful even though the RootCertDir property has not been explicitly
set; in this situation Conga uses Dyalog's certificate in theMicrosoft Certificate
Store's trusted root certificates directory.

If a secure server's RootCertDir parameter has not been defined to point to a
valid CA certificate, then a client will be unable to make a secure connection to that
server.

EXAMPLE

args←'C1' 'ssltest.dyalog.com' 713 'Text' 100000
args,←⊂('X509' (⎕NEW DRC.X509Cert))
DRC.Clt args

1202 ERR_INVALID_PEER_CERTIFICATE /* The peers certificate
is not valid */ 66

revision20170627_300 27

Conga User Guide

Without access to a valid CA certificate, validation fails. However, the connection is
successful if validation is disabled; this means that, when trying to determine why a
connection is failing, it can be useful to set the value of the SSLValidation parameter
to 32 (accept the server certificate without validating it):

args←'C1' 'ssltest.dyalog.com' 713 'Text' 100000
args,←⊂('X509' (⎕NEW DRC.X509Cert))
DRC.SetProp '.' 'RootCertDir' 'path/TestCertificates/ca/'

0
DRC.Clt args,⊂'SSLValidation' 32

0 C1

Having connected without validation, the certificate information can be retrieved and a
decision madewhether to proceed with the conversation with this server.

EXAMPLE

rc cert←DRC.GetProp 'C1' 'PeerCert'
,[1.5]1⊃cert.Formatted.(ValidFrom ValidTo Issuer Subject)

Wed Apr 01 15:28:02 2015
Fri May 04 17:32:04 2018
C=BE,O=GlobalSign nv-sa,CN=GlobalSign Organization Validation CA -
SHA256 - G2
C=GB,ST=Hampshire,L=Alton,OU=IT,O=Dyalog Limited,CN=*.dyalog.com

Once a secure server and client have been linked, operations are exactly the same as for a
non-secure server and client.

5.4 Creating a Secure Server
A server must be defined as secure when it is created – it is not possible to convert
an existing non-secure server into a secure server.

Secure servers are created in the sameway as secure clients (see Section 5.3) with the
additional rule that a secure server must have a certificate.

EXAMPLE

DRC.SetProp '.' 'RootCertDir' 'path\TestCertificates\ca\'
0

cert←⊃DRC.X509Cert.ReadCertFromFile
'path\TestCertificates\server\server-cert.pem'

cert.KeyOrigin←'DER' 'path\TestCertificates\server\server-
key.pem'

certs←('X509' cert)('SSLValidation' 64)

revision20170627_300 28

Conga User Guide

DRC.Srv 'S1' '' 713 'Text',certs
0 S1

When a client is connected to a secure server, the server can request the client's
certificate information by calling the DRC.GetProp function on the connection object
(see Section A.12). However, it is not mandatory for a client to have a certificate and a
server can only request information about a client's certificate if the SSLValidation
parameter that is included when creating a secure server indicates (see Section A.20)
includes one of the following TLS flags (see Appendix C for a complete list of TLS flag
values):

l RequestClientCertificate (64) – including this flag means that connections are
permitted from clients even if they do not have a certificate; if a client does have a
certificate then information on that certificate is passed to the server.

l RequireClientCertificate (128) – including this flag means that connections are only
permitted from clients that have a certificate.

If no client certificate is requested, or no certificate exists, then certificate information will
have zero rows when queried.

The validation of client certificates requires access to root certificates; before requesting
any client certificate information the DRC.SetProp function (see Section A.19) must be
called on the root object to identify the folder containing these certificates. For example:

DRC.SetProp '.' 'RootCertDir' 'path\TestCertificates\ca'

Connections that are rejected due to certificate validation failure do not generate
events on the server, so no application code is required to handle this situation.

5.5 Using the DRC.X509Cert Class
Conga includes a class to encapsulate certificate handling – DRC.X509Cert. This class has
methods to read certificates from files, folders and Microsoft certificate stores; for a
complete description of the DRC.X509Cert class, see Section A.24.

Certificate information is returned as an X509Cert object. This can:
l be used to validate a peer certificate in combination with flags such as

CertAcceptWithoutValidating (see Table C-1).
l enable a server to confirm the identity of a client without requiring a login.

The specific information can vary, but usually includes the certificate issuer, subject,
public key algorithm, certificate format version, serial number and valid from/to dates. If
no certificate exists or, in the case of a server object, no certificate information has been
requested (see Table C-1), then the X509Cert object is an empty vector.

revision20170627_300 29

Conga User Guide

To read one or more certificates from a file:
path←Samples.CertPath
file←path,'client/client-cert.pem'
⍴myCert←DRC.X509Cert.ReadCertFromFile file

1

As only a single certificate is present, the outermost layer of nesting can be removed:

⊢myCert←⊃myCert
#.DRC.X509Cert.[X509Cert]

myCert.⎕NL ¯2 ⍝ examine its properties
Cert CertOrigin Elements Extended Formatted KeyOrigin LDRC
ParentCert UseMSStoreAPI

Elements, Extended and Formatted contain specific information about the certificate.
Elements contains the information in a basic format while Formatted and Extended
have the same elements in a more human-readable format (Extendedmay, in some
instances, contain more information). For example:

myCert.Elements.⎕NL ¯2
AlgorithmID AlgorithmParams Description EnhancedKeyUsage

Extensions FriendlyName Issuer IssuerID Key KeyContainer
KeyHex KeyID KeyLength KeyParams KeyProvider KeyProviderType
SerialNo Subject SubjectID ValidFrom ValidTo Version

myCert.Elements.(ValidFrom ValidTo)
2008 2 15 16 19 50 0 2018 2 12 16 20 4 0

myCert.Formatted.(ValidFrom ValidTo)
Fri Feb 15 11:19:50 2008
Mon Feb 12 11:20:04 2018

myCert.Extended.(ValidFrom ValidTo)
Fri Feb 15 16:19:50 2008
Mon Feb 12 16:20:04 2018

myCert.⎕NL ¯3 ⍝ examine methods
AsArg Chain CopyCertificationChainFromStore IsCert
ReadCertFromFile ReadCertFromFolder ReadCertFromStore Save

mycert.IsCert ⍝ my certificate is indeed a certificate!
1

revision20170627_300 30

Conga User Guide

5.5.1 Certificate Chains

A certificate chain (also known as a certification path) is a hierarchy of certificates used for
authentication. The first entity in the chain is the certificate for a specified Conga object.
Progressing through the chain, each certificate is signed by the owner of the next entity in
the chain (that is, the Issuer of the lower certificate is the Subject for the certificate
above it in the chain), as shown in Figure 5-1. The final entity in the chain is a root CA
certificate.

Figure 5-1: Certificate chain

Continuing the example in Section 5.5:
myCert.Chain

#.DRC.X509Cert.[X509Cert] #.DRC.X509Cert.[X509Cert]

This is the certificate chain for the test client certificate; it comprises two certificates, the
client certificate and the test CA certificate. This can be verified by inspecting the Issuer
for the lower certificate in the chain and the Subject for the higher certificate in the chain
– they should be the same:

]DISPLAY myCert.Chain.Formatted.Subject
┌→──┐
│ ┌→─────────────┐ ┌→───────────────────┐ │
│ │CN=Test client│ │O=Test CA,CN=Test CA│ │
│ └──────────────┘ └────────────────────┘ │
└∊──┘

]DISPLAY myCert.Chain.Formatted.Issuer
┌→──┐
│ ┌→───────────────────┐ ┌→───────────────────┐ │
│ │O=Test CA,CN=Test CA│ │O=Test CA,CN=Test CA│ │
│ └────────────────────┘ └────────────────────┘ │
└∊──┘

The lowest certificate in the chain (in this case, the client certificate) is always shown on
the left, and the highest certificate in the chain (in this case, the test CA certificate) is
always shown on the far right, with any intermediate certificates in the appropriate

revision20170627_300 31

Conga User Guide

location between them. In this example, the Issuer for the lower certificate in the chain
and the Subject for the higher certificate in the chain can be seen to be the same,
confirming the authenticity of the client certificate.

In addition, the test CA certificate has the same value for its Issuer as it does for its
Subject; this certificate is, therefore, self-signed.

revision20170627_300 32

Conga User Guide

6 The Conga Workspace

The congaworkspace includes several working examples that demonstrate how to use
most of the functionality provided by Conga. Although these are simple, many provide a
useful starting point for communicating with Dyalog applications.

Table 6-1 summarises the contents of the congaworkspace.

Name Description

DRC
Namespace for the Conga interface functions and methods – these are
detailed fully in Appendix A.

FTPClient

Class that implements a passive mode FTP client, with functions to:
l List the contents of a folder on an FTP server
l Get and Put files (in either binary mode or text mode)

For more information, see Section 6.4.

HTTPUtils Namespace for manipulating HTTP headers.

RPCServer
Namespace comprising a framework for a Remote Procedure Call server
based on Commandmode clients for communication between APL
systems. For more information, see Section 6.3.

Samples
Namespace for functions that demonstrate and test everything else in
the congaworkspace. For more information, see Section 6.1.

TODServer
Namespace comprising a simple TOD (Time Of Day) service. For more
information, see Section 6.5.

WebServer

Namespace comprising a basic HTTP server that can provide simpleWeb
Services. For more information, see Section 6.2.
For MiServer, a more complete APL-based web server, see
https://www.github.com/Dyalog/MiServer.

Table 6-1: Contents of the congaworkspace

revision20170627_300 33

Conga User Guide

https://www.github.com/Dyalog/MiServer

6.1 Namespace: Samples
The Samples namespace contains functions and operators that interact with web servers
and services as well as functions that demonstrate and test themajority of the
functionality provided in the congaworkspace. Some of the functions within the
Samples namespace are not documented; these are called by other functions and
should not be amended.

6.1.1 Function: Samples.Test*

The Samples.Test* functions illustrate some of the functionality and versatility of the
contents of the conga workspace. They comprise:

l TestAll
Cover function that runs several of the other Test* functions. The final two tests
require a TOD (Time of Day) and QOTD (Quote of the Day) server to be running
respectively.

l TestAllSecure
Secure version of the TestAll function.

l TestCompression
Uses the DRC.Flate.Inflate and DRC.Flate.Deflate functions (see Section A.10
and Section A.9 respectively) to apply and remove HTTP deflate compression
algorithms.

l TestFTPClient
Uses the FTPClient class to connect to ftp.mirrorservice.org and accesses the file
pub/FreeBSD/README.TXT from this website.

l TestRPCServer
Starts an RPC server on port 5050 and then spawns a number of threads; each
thread makes a remote procedure call to one of the functions (Foo and Goo) in the
RPCServer namespace (see Section 4.5.1 and Section 6.3).

l TestSecureConnection
Creates a secure server and connects a secure client to it; sends a transaction over
the secure connection.

l TestSecureWebClient
Secure version of the TestWebClient function.

l TestSimpleServices
Attempts to connect to and use the TOD (Time of Day) and QOTD (Quote of the
Day) services on a named host.

l TestWebClient
Uses the Samples.HTTPGet function (see Section A.26) to retrieve the contents of
Dyalog Ltd's website (http://www.dyalog.com/).

l TestWebFunctionServer
Launches the example web server, starts a number of threads and calls the

revision20170627_300 34

Conga User Guide

ftp://ftp.mirrorservice.org/
http://www.dyalog.com/

Samples.HTTPGet function to request pages, thus testing that the web server
that has been started and is responding as expected.

l TestX509Certs
Builds certificates and key files into variables used by the secure versions of the
tests.

6.2 Namespace: WebServer
This namespace contains a basic implementation of a web server. Although this web
server is too simple to providemany of the services that more sophisticated web servers
provide, it does illustrate how a web server that interfaces to a web browser can be
implemented with only a very small amount of APL; even this very simple web server can
deliver real files from the file system or, using APL functions, intercept requests and
manufacture virtual pages on request.

For a more complete APL based web server, see Dyalog's MiServer at
https://www.github.com/Dyalog/MiServer.

The WebServer.Run function launches the web server (see Section A.30).

6.2.1 Function: WebServer.Run

The code for the WebServer.Run function works as follows:

[10] Call the DRC.Init function to ensure that the DRC namespace is initialised.

[28] Create a server object on the specified port in Rawmode (this is the same as
Textmode except it returns byte numbers in the range 0-255).

[39] Loop on the DRC.Wait function, timing out every 10 seconds – this allows
for graceful shutdowns as well as housekeeping.

[41] Check the first element of the result of the DRC.Wait function; this is the
return code.

[42] If the return code is 0, then the DRC.Wait function successfully returned an
event.

[45-50] If the event was an error on the socket, then that socket must be closed
and the data namespace for the client cleaned up (the SpaceName function
generates a name for the namespace based on the IP address and port
number of the client).

revision20170627_300 35

Conga User Guide

https://www.github.com/Dyalog/MiServer

[52-55] If the event was the receipt of data, then call the
WebServer.HandleRequest function in a new thread (in the appropriate
client namespace), passing it the object name and input data. The
WebServer.HandleRequest function calls the DRC.Send function to
send the response to the client.

[57-59] If the event was the client closing the connection, then expunge the
namespace.

[61-71] If the event was a Connect event, then create a unique namespace for the
connection, assigning local variables for server and client (including
certificates if the connection is a secure connection).

[73-74] If the return code is 100, then nothing has happened for 10 seconds (the
timeout period set in [39]). Optionally, housekeeping tasks can be inserted
here. For a busy web server, housekeeping is necessary even without
timeouts.

[76-78] If the return code is 1010 (object not found), then the server object cannot
be located. Themost likely explanation is that another thread has closed it –
several of the Samples.Test* functions (see Section 6.1.1) do this once
they have completed client tests.

[88-89] The loop is exited when a component of the server initiates a shut down.
The DRC.Close function is called to close the server object.

6.3 Namespace: RPCServer
The RPC server is similar to the web server discussed in Section 6.2, except that Command
mode is used to transmit RPCs to the server; the server then validates and executes them
and returns the array result to the client.

As Commandmode is used, both the client and the server need to be Conga users;
constructing a non-APL client that can use Commandmode is possible but not trivial.
However, most non-APL clients already support SOAP for remote procedure calls (SOAP is
an established standard for web services for which there aremany tools in the non-APL
world) and SAWS, Dyalog's Stand-AloneWeb Services framework, enables users to
provide and consume SOAP-based web services. For more information, see the SAWS
User Guide.

revision20170627_300 36

Conga User Guide

6.3.1 Function: RPCServer.Run

The code for the RPCServer.Run function works as follows:

[10] Call the DRC.Init function to ensure that the DRC namespace is initialised.

[24-31] So that it can return an error if it is unable to start the server, the DRC.Srv
function first creates a Commandmode server on line [24]; the Run
function only starts a new handling thread on line [26] (by calling itself
recursively with a left argument of 0) if the server was successfully created.
The handler continues execution from the :While on line [32].

[32-33] Loop on the DRC.Wait function, timing out every 3 seconds – this allows
for graceful shutdowns as well as housekeeping.

[35] Check the first element of the result of the DRC.Wait function; this is the
return code.

[36] If the return code is 0, then the DRC.Wait function successfully returned an
event.

[38-42] If the event was an error, then:
l if the object in error was the server, close it and stop running.
l if the object in error was not the server, ignore the error

(Housekeeping tasks could be performed here if client sessions were being
tracked.)

[44-53] If the event was the receipt of data, then validate the format of the
incoming array to confirm that the first element names a function that can
be called. If all is OK, run the Process function in a new thread, passing the
object name and input data to it. The Process function calls the
DRC.Progress function to signal progress and then the DRC.Respond
function to send the answer to the client.

[55-62] If the event was a Connect event then:
l for non-secure connections – ignore.
l for secure connections – retrieve and display peer certificate

information (serial number, issuer and subject).

[67] If the return code is 100, then nothing has happened for 3 seconds (the
timeout period set in [16]). Optionally, housekeeping tasks can be inserted
here. For a busy web server, housekeeping is necessary even without
timeouts.

revision20170627_300 37

Conga User Guide

[69-70] If the return code is 1010 (object not found), then the server object cannot
be located. Themost likely explanation is that another thread has closed it –
several of the Samples.Test* functions (see Section 6.1.1) do this once
they have completed client tests.

[76-78] The loop is exited when a component of the server initiates a shutdown.
The DRC.Close function is called to close the server object.

6.4 Class: FTPClient
This class implements a basic passivemode FTP client. The Samples.TestFTPClient
function shows an example of the FTPClient class in use – it lists the contents of the
pub/FreeBSD folder at ftp.mirrorservice.org and retrieves the README.TXT file from this
folder.

This code for the FTPClient class works as follows:

Open
[4]

Call the DRC.Init function to ensure that the DRC namespace is
initialised.

Open
[6]

Create a client object in Textmode for issuing commands to the FTP
server.

Open
[11-13]

Use the Domethod to enter user ID and password and check for the
expected responses from the server.

Do
[5&10]

(called by the Openmethod) Send a command to the server and return
the FTP state code following the command using the ReadReply
method.

ReadReply
[2]

(called by the Domethod)Wait for a response from the server.

GetData
[3]

Execute the PASVmethod to prepare for passive-mode data transfer; the
server returns the dataport that it has opened.

GetData
[4]

Create a client object in Text or Rawmode to the dataport identified by
the PASVmethod.

GetData
[5]

Specify whether the data will be transferred using ASCII or binary format.

GetData
[6]

Issue the command to the server to start sending data.

revision20170627_300 38

Conga User Guide

ftp://ftp.mirrorservice.org/

GetData
[9-11]

Continue collecting output response until the server closes the
connection.

GetData
[14]

Confirm that the server thinks transfer of data has been completed.

PutData
[6-8]

Same as GetData[3-5].

PutData
[10]

Send all data in a single call to the DRC.Send function.

6.5 Namespace: TODServer
This namespace comprises a simple TOD (Time Of Day) service in the form of a server
object that is created and closed by a Run function.

This TOD server is the starting point for the examples in Section 4.3 and Section 4.4.

6.5.1 Function: TODServer.Run

The code for the TODServer.Run function is:
∇ Run port;wait;data;event;obj;rc;r
[1] ⍝ Time of Day Server Example (use port 13 by default)
[2]
[3] ##.DRC.Init '' ⋄ DONE←0 ⍝ DONE is used to stop service
[4] :If 0≠1⊃r←##.DRC.Srv 'TOD' '' port 'Text'
[5] ⎕←'Unable to start TOD server: ',⍕r
[6] :Else
[7] ⎕←'TOD Server started on port ',⍕port
[8] :While ~DONE
[9] rc obj event data←4↑wait←##.DRC.Wait 'TOD' 1000 ⍝
Time out every second
[10] :Select rc
[11] :Case 0
[12] :Select event
[13] :Case 'Connect'
[14] r←(,'ZI2,<:>,ZI2,<:>,ZI2,< >,ZI2,<->,ZI2,<->,ZI4'
⎕FMT 1 6⍴⎕TS[4 5 6 3 2 1]),⎕AV[4 3]
[15] {}##.DRC.Send obj r 1 ⍝ 1=Close connection
[16] :Else
[17] {}##.DRC.Close obj ⍝ Anything unexpected

revision20170627_300 39

Conga User Guide

[18] :EndSelect
[19] :Case 100 ⍝ Time out - Housekeeping Here
[20] :Else
[21] ⎕←'Error in Wait: ',⍕wait ⋄ DONE←1
[22] :EndSelect
[23] :EndWhile
[24] {}##.DRC.Close'TOD' ⋄ ⎕←'TOD Server terminated.'
[25] :EndIf
∇

This works as follows:

[3] Call the DRC.Init function and set global flag DONE to zero.

[4] Create a server object named TOD on selected port in Textmode.

[8] Repeat the following until DONE is equal to 1:

[9] Wait for any event and split the result into rc (return code), obj (object
name – a string identifying a child object of TOD with a name like
'TOD.CON00000000'), event and data.

[14] If return code was 0 and the event was Connect, then format the time of
day.

[15] Send the time of day to obj. The third element of the argument is set to a
value of 1 to instruct Conga to close the object as soon as the data has been
sent.

[17] For any other event, close the connection.

[19] Check here every 1,000milliseconds (as specified in the argument to the
DRC.Wait function on line [9]) for housekeeping tasks to perform (none
are specified in this code sample, but they can be added here if required).

[21] Any return code from the DRC.Wait function other than 0 or 100 shuts
down the service.

[24] Close the server object.

revision20170627_300 40

Conga User Guide

A Technical Reference

The functions and methods in the DRC namespace are intended for use by applications;
these are documented in this appendix. Any additional functions in the DRC namespace
are for internal use and should not be called by application code.

The notation used when describing the syntax for a function/method in this document is
as follows:

l square brackets [] indicate an optional argument
l curly braces {} indicate a mandatory argument
l a vertical line | separates mutually exclusive arguments
l italic text indicates an element that must be populated by the user

The order in which parameters are specified must be as shown in the syntax; however,
individual parameters can be specified using parenthesised name-value pairs to eliminate
the need to specify all parameters, for example, ('X509' myCert) or ('EOM' (⎕UCS
13 10)).

A.1 DRC Return Codes
Many of the functions in the DRC namespace generate a return code as the first element
of their result. The value of this return code indicates whether the function was successful
in its action:

l If the return code is 0, then the function successfully performed its requisite
actions; the rest of the result is as described in this appendix.

l If the return code is not 0, then the function did not successfully perform its
requisite actions; the rest of the result vector comprises error name (vector
element [2]) and error description, if available (vector element [3]).

revision20170627_300 41

Conga User Guide

Dyalog Ltd recommends that you check the return code in the result before attempting to
process other elements of the result. As the number of items returned can vary
depending on whether the function successfully performed its requisite actions, this
requires code resembling the following:

:if 0≠1↑res ← DRC.Certs arg
rc err desc ← res
... ⍝ error processing

:else
rc stores ← res
... ⍝ normal processing

A.2 Function: DRC.Certs
This only applies when running on theMicrosoft Windows operating system and is
limited to client-side certificates.

Purpose: Returns a list of all the certificate store names defined on the local machine.

Syntax: rc stores ← DRC.Certs {'ListMSStore'}

where:
l rc is the return code (see Section A.1)
l stores is a vector of character vectors each containing a store name, for example,

My and Root.
l 'ListMSStore' is an instruction to the function to includeMicrosoft certificate

store names in the returned stores vector

Example:

]Display DRC.Cert 'ListMSStore'
┌→───┐
│ ┌→───┐ │
│ 0 │ ┌→─┐ ┌→───┐ ┌→────┐ ┌→─┐ ┌→─────┐ ┌→───────────────┐ │ │
│ │ │My│ │Root│ │Trust│ │CA│ │UserDS│ │TrustedPublisher│ │ │
│ │ └──┘ └────┘ └─────┘ └──┘ └──────┘ └────────────────┘ │ │
│ └∊───┘ │
└∊───┘

A.3 Function: DRC.ClientAuth
Integrated Windows Authentication is only available on a Microsoft Windows
domain – both client and server must be running on Microsoft Windows.

revision20170627_300 42

Conga User Guide

Purpose: Performs client-side Integrated Windows Authentication (IWA). Only valid for a
Command-mode client connected to a Command-mode server

Syntax: rc ← DRC.ClientAuth {clientname} [{userid} {password}]

where:
l rc is the return code (see Section A.1)
l clientname is the name of the Command-mode client.
l userid is the user's Microsoft Windows User ID.
l password is the user's Microsoft Windows password.

DRC.ClientAuth and DRC.ServerAuth (see Section A.18) must be run at the
same time.

A.4 Function: DRC.Close
Purpose: Closes the specified Conga object.

Syntax: rc ← DRC.Close
{servername|clientname|connectionname|commandname}

where:
l rc is the return code (see Section A.1)
l servername|clientname|connectionname|commandname is the name of the

Conga server/client/connection/command to close (respectively).

Example:

DRC.Close 'C1'
0

A.5 Function: DRC.Clt
Purpose: Creates a Conga client object.

Syntax: rc name ← DRC.Clt {clientname} {Address} [Port] [Mode]
[BufferSize] [SSLValidation] [EOM] [IgnoreCase] [Protocol]
[PublicCertData] [PrivateKeyFile] [PrivateKeyPass]
[PublicCertFile] [PublicCertPass] [PrivateKeyData] [Priority]
[Magic] [X509]

revision20170627_300 43

Conga User Guide

where:
l rc is the return code (see Section A.1)
l name is the name of the Conga client that has been created. If no clientnamewas

specified ('') then this is auto-generated.
l clientame is the name of the Conga client to create. If '' is specified rather than

a specific name, then the namewill be auto-generated.
l Address is the address of the server
l Port is the port number that the server will listen on
l Mode is the connection protocol (see Section 4.1.3). Possible values are Command,

Text, Raw, BlkText or BlkRaw. The default is Command.
l BufferSize is themaximum size (in bytes) allocated to the buffer that receives

data transmissions. The default is 16,384. Only valid for clients in
Raw/Text/BlkRaw/BlkTextmode, not those in Commandmode.

l SSLValidation is the sum of the relevant TLS flags (see Appendix C). Only valid
when creating a secure client (see Section 5.3).

l EOM is a simple character vector or a vector of vectors indicating the termination
string(s) (see Section 4.1.3). Only valid for clients in Raw/Textmode, not those in
BlkRaw/BlkText/Commandmode.

l IgnoreCase is a Boolean indicating whether searches for the termination string
defined in EOM are case sensitive. Possible values are:

o 0 : do not ignore case when searching for termination strings
o 1 : ignore case when searching for termination strings

Only valid for clients in Raw/Textmode, not those in BlkRaw/BlkText/Command
mode.

l Protocol is the communication protocol to use. Possible values are:
o IPv4 : use the IPv4 connection protocol; if this is not possible then generate

an error
o IPv6 : use the IPv6 connection protocol; if this is not possible then generate

an error
o IP : use the IPv6 connection protocol; if this is not possible then use the IPv4

connection protocol.

The default is to inherit the protocol defined for the root object.

l PublicCertData has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure client (see Section 5.3).

l PrivateKeyFile has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure client (see Section 5.3).

revision20170627_300 44

Conga User Guide

l PrivateKeyPass has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure client (see Section 5.3).

l PublicCertFile has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure client (see Section 5.3).

l PublicCertPass has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure client (see Section 5.3).

l PrivateKeyData has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure client (see Section 5.3).

l Priority is the GnuTLS priority string (for complete documentation of this, see
http://www.gnutls.org/manual/gnutls.html#Priority-Strings).

l Magic is a 32-bit integer used to check that the data has not been corrupted. Only
valid for clients in BlkRaw/BlkTextmode, not those in Raw/Text/Commandmode.

l X509 is a reference to an instance of the X509Cert class. Only valid when creating a
secure client (see Section 5.3).

The [PublicCertData], [PrivateKeyFile], [PrivateKeyPass],
[PublicCertFile], [PublicCertPass] and [PrivateKeyData] arguments are
mutally exclusive with the [X509] argument.

Examples:

To create C1, a Commandmode client of a server at 192.168.1.1 listening on port 5050:
DRC.Clt 'C1' '192.168.1.1' 5050

0 C1

To create a secure Commandmode client of the secure Commandmode server at
192.168.1.1 listening on port 5050:

mycert←⊃DRC.X509Cert.ReadCertFromFile 'path/client-cert.pem'
mycert.KeyOrigin←'DER' 'path/client-key.pem'
DRC.Clt 'C1' '192.168.1.1' 5050,⊂('X509' mycert)

('SSLValidation' 16)
0 C1

To create a Textmode client (with an auto-generated name) of a server on the same
machine, listening on port 30, with a maximum buffer size of 1000 characters and a
termination sequence of <CRLF>:

DRC.Clt '' 'localhost' 30 'Text' 1000 ('EOM' (⎕UCS 13 10))
0 CLT00000000

revision20170627_300 45

Conga User Guide

http://www.gnutls.org/manual/gnutls.html#Priority-Strings

Related function:
l DRC.Srv – see Section A.20

A.6 Function: DRC.Describe
Purpose: Returns a description of the specified Conga object. Similar to the DRC.Tree
function (see Section A.21) except that DRC.Describe only returns information for the
specified object (not its children) and the descriptions are textual rather than numeric
codes.

Syntax: rc desc ← DRC.Describe {objectname}

where:
l rc is the return code (see Section A.1)
l desc is a multi-element vector proving a textual description of the specified object
l objectname is the name of the Conga object to describe

For all objects except the root object, the description desc starts with the following
elements:

l [1] is the name of the object
l [2] is the object's type (see Section 4.1.1)
l [3] is the object's state (see Section 4.1.2)

The description desc of objects of type 4 (commands) and 5 (messages) has additional
elements:

l [4] is the size of the object that has been processed so far (in bytes)
l [5] is the size of the object that has not yet been processed (in bytes)

For the root object '.', the description desc comprises the following elements:

l [1] is [DRC]
l [2] is the version of Conga
l [3] is the object's state (see Section 4.1.2)
l [4] is the thread count

Examples:

DRC.Describe '.'
0 [DRC] Conga Dynamic Link Library 2.6.956.0 Copyright (C)
2004-2015 Dyalog Ltd. built Nov 2 2015 10:48:51. GnuTLS 3.2.15
Copyright (c) 2000-2015 Free Software Foundation, Inc. Built Jul
9 2015 at 09:48:37. Revision: 106 State=RootInit Threads=0

revision20170627_300 46

Conga User Guide

DRC.Describe 'C1'
0 CLT00000000 Client Connected

Similar functions:
l DRC.Names – see Section A.14
l DRC.Tree – see Section A.21

A.7 Function: DRC.Error
Purpose: Converts an error number into a textual identification or description of the
error.

Syntax: no name [desc] ← DRC.Error {no}

where:
l no is the error number
l name is the name of the error
l desc is a description of the error, for example, /* unable to complete a
TLS handshake with the peer */

Example:

DRC.Error 1009
1009 ERR_NAME_IN_USE

A.8 Function: DRC.Exists
Purpose: Verifies whether a specified Conga object exists.

Syntax: bool ← DRC.Exists {objectname}

where:
l bool indicates whether the object exists. Possible values are:

o 0 – the object does not exist
o 1 – the object exists

l objectname is the name of the Conga object whose existence is being verified

Example:

DRC.Exists 'C1'
1

revision20170627_300 47

Conga User Guide

A.9 Method: DRC.Flate.Deflate
Purpose: Compresses data using the deflate compression scheme (see Section 4.6). Used
to implement server-side HTTP compression.

Syntax: comp ← DRC.flate.Deflate {data}

where:
l comp is the compressed data. Comprises an integer vector with values in the range

0-255. The first 2 elements comprise a header, 120 156, for the zlib wrapper for
the compressed data – this header should be removed before sending to the
client.

l data is the data to be compressed. Comprises an integer vector with values in the
range 0-255. To convert from character format to integer format, use
'UTF-8' ⎕UCS data.

Example:

DRC.flate.Deflate 256|83 ⎕DR 2000⍴'this is a test'~
120 156 43 201 200 44 86 0 162 68 133 146 212 226 146 146 81 222
40 111 148 55 202 27 229 141 242 70 121 67 144 7 0 17 217 213 243

A.10 Method: DRC.Flate.Inflate
Purpose: Decompresses data that has been compressed using the deflate compression
scheme (see Section 4.6). Used to implement client-side HTTP compression.

Syntax: data ← DRC.flate.Inflate {comp}

where:
l data is the decompressed data. Comprises an integer vector with values in the

range 0-255. To convert from integer format to character format, use 'UTF-
8' ⎕UCS data.

l comp is the compressed data. Comprises an integer vector with values in the range
0-255. The first 2 elements comprise a header, 120 156, for the zlib wrapper for
the compressed data – if the header is not present, it should be prepended before
the DRC.flate.Deflatemethod is called.

Example:

tmp ← DRC.flate.Deflate 256|83 ⎕DR 'this is a test'
'UTF-8' ⎕UCS DRC.flate.Inflate 256|83 ⎕DR tmp

this is a test

revision20170627_300 48

Conga User Guide

A.11 Method: DRC.Flate.IsAvailable
Purpose: Validates whether the deflate compression library is loaded.

Syntax: bool ← DRC.flate.IsAvailable

where:
l bool is a Boolean indicating whether the deflate compression library is loaded:

o 0 : the deflate compression library is not loaded and compression cannot be
used

o 1 : the deflate compression library is loaded

Example:

DRC.flate.IsAvailable
1

A.12 Function: DRC.GetProp
Purpose: Retrieves property values for the specified Conga object.

Syntax: rc res ← DRC.GetProp {objectname} {property} [arg]

where:
l rc is the return code (see Section A.1)
l res is the retrieved property value; its format depends on the property requested

(see Table A-1)
l objectname is the name of the Conga object for which to retrieve the value of the

specified property
l property is the name of the property to retrieve the value for; not all properties

are relevant for all object types (see Table A-1)
l arg is an additional argument that might be required depending on the property

requested (see Table A-1)

The property values that can be retrieved depend on the type of the specified Conga
object; they are described in Table A-1. These values are specified using the
DRC.SetProp function (see Section A.19) or when a server/client is created using the
DRC.Srv/DRC.Clt function (see Section A.20 and Section A.5 respectively).

revision20170627_300 49

Conga User Guide

Property Object Type Description/Syntax

KeepAlive
Client,
Server,
Connection

The frequency with which periodic heartbeat messages
are sent to verify that the connection is live. A 2-element
vector in which:

l [1] is the time (in ms) to wait before sending the
first heartbeat

l [2] is the time interval (in ms) between
heartbeats

LocalAddr
Client,
Server,
Connection

A 4-element vector in which:
l [1] is the communication protocol
l [2] is the IP address (formatted according to the

communication protocol) and port number
l [3] is the address bytes
l [4] is the port number being used

Magic Connection
A 32-bit number unique to the blocks in a single data
transmission. Only valid in BlkRaw/BlkTextmode, not
Raw/Text/Commandmode.

OwnCert
Client,
Server,
Connection

The X509Cert object containing information about the
certificate of the specified Conga object.

PeerAddr
Client,
Connection

The address of the specified Conga object's peer. A 4-
element vector in which:

l [1] is the communication protocol
l [2] is the IP address (formatted according to the

communication protocol) and port number
l [3] is address bytes
l [4] is the port number being used

PeerCert
Client,
Connection

The X509Cert object containing information about the
certificate of the specified Conga object's peer.

PropList all A list of the properties relevant for the object's type.

Table A-1: Properties that can be retrieved by the DRC.GetProp function

revision20170627_300 50

Conga User Guide

Property Object Type Description/Syntax

Protocol Root

The communication protocol in use. Possible values are:
l IPv4 : use the IPv4 connection protocol; if this is

not possible then generate an error
l IPv6 : use the IPv6 connection protocol; if this is

not possible then generate an error
l IP : use the IPv6 connection protocol; if this is not

possible then use the IPv4 connection protocol
This property value is inherited when creating a
connection unless a different value is specified.

ReadyStrategy
Root,
Server

The strategy by which the next connection to process is
determined when more than one connection has
received data. Possible values are:

l 0 : "Use First" – process the first connection in the
object tree (for information on the object tree,
see Section A.21). This approach can result in
connections not being serviced.

l 1 : "Round Robin" – process the first connection
in the object tree after the one that has just been
processed.

l 2: "Oldest First" – process the connection that has
been waiting for the longest time. This is
considered to be the least biased approach but
consumes slightly more CPU than strategy 1.

RootCertDir Root Full path to (and name of) the directory that contains
Certificate Authority root certificates.

Table A-1: Properties that can be retrieved by the DRC.GetProp function (continued)

revision20170627_300 51

Conga User Guide

Property Object Type Description/Syntax

TCPLookup Root

Requires an additional argument comprising a 2-element
vector in which:

l [1] is a URL or IP address as a character string
l [2] is the port number (0means all ports at the

URL/IP address) or service name
The address of the specified URL/IP address and port. A
4-element vector in which:

l [1] is the communication protocol
l [2] is the IP address (formatted according to the

communication protocol) and port number
l [3] is the address bytes
l [4] is the port number

Multiple 4-element vectors can be returned if both IPv4
and IPv6 information is available.

Table A-1: Properties that can be retrieved by the DRC.GetProp function (continued)

Examples:

DRC.GetProp '.' 'PropList'
0 Certificates DecodeCert PropList Protocol ReadyStrategy
RootCertDir Stores TCPLookup

DRC.GetProp '.' 'TCPLookup' 'www.dyalog.com' 80
0 IPv6 [2a02:2658:1012::35]:80 42 2 38 88 16 18 0 0 0 0 0 0 0
0 0 53 80 IPv4 81.94.205.35:80 81 94 205 35 80

DRC.GetProp 'C1' 'OwnCert'
0 #.DRC.[X509Cert]

A.13 Function: DRC.Init
Purpose: Loads and initialises (or reinitialises) the Conga Dynamic Link Library (Microsoft
Windows) or Shared Library (UNIX/Linux).

Syntax: rc ← [reset] DRC.Init {''}

where:
l rc is the return code (see Section A.1)
l reset is a code indicating the action to take if Conga has already been initialised.

revision20170627_300 52

Conga User Guide

Possible values are:
o 1 : close any existing Conga objects
o ¯1 : reload the library

For any other value, a message is returned stating that Conga has already been
loaded.

The right argument to this function is currently unused but is reserved for future
extensions.

Example:

DRC.Init ''
0 Conga loaded from: ...\conga27x64Uni

A.14 Function: DRC.Names
Purpose: Returns the names of existing Conga objects that are first-level descendants of
the specified Conga object.

Syntax: names ← DRC.Names {objectname}

where:
l names is a list of the names of all first-level descendants of the specified Conga

object. If there are no first-level descendants of the specified Conga object, then
names is an empty vector.

l objectname is a character vector of the name of the Conga object for which to
return the names of its first-level descendants

Examples:

DRC.Names ''
C1 C2 C3

DRC.(Close¨Names '')
0 0 0

Similar functions:
l DRC.Describe – see Section A.6
l DRC.Tree – see Section A.21

revision20170627_300 53

Conga User Guide

A.15 Function: DRC.Progress
Purpose: Sends an APL array to a client in response to a command received from that
client. Only valid for a Command-mode server.

A server can call the DRC.Progress function any number of times before calling the
DRC.Respond function (see Section A.16).

Syntax: rc ← DRC.Progress {commandname} {data}

where:
l rc is the return code (see Section A.1)
l commandname is the name of the command received from the client. It must

match the objectname returned by the DRC.Wait function (see Section A.23)
l data is any array

Example:

A Command-mode client sends data to a Command-mode server using the DRC.Wait
function. The server stores the result in waitresult. The following expression can be
used to send a progress report to the client:

DRC.Progress (2⊃waitresult) 'Task 50% completed'

Related functions:
l DRC.Respond – see Section A.16
l DRC.Send – see Section A.17
l DRC.Wait – see Section A.23

A.16 Function: DRC.Respond
Purpose: Sends an APL array to a client in response to a command received from that
client. Only valid for a Command-mode server.

Syntax: rc ← DRC.Respond {commandname} {data}

where:
l rc is the return code (see Section A.1)
l commandname is the name of the command received from the client. It must

match the objectname returned by the DRC.Wait function (see Section A.23)
l data is any array

revision20170627_300 54

Conga User Guide

Example:

A Command-mode client sends data to a Command-mode server using the DRC.Wait
function. The server stores the result in waitresult. The following expression can be
used to call the Process function on the data that accompanied themost recent
command and send the result to the client:

DRC.Respond (2⊃waitresult) (Process 4⊃waitresult)

Related functions:
l DRC.Progress – see Section A.15
l DRC.Send – see Section A.17
l DRC.Wait – see Section A.23

A.17 Function: DRC.Send
Purpose: Send data to the peer client/server. Not valid for a Command-mode server.

Syntax: rc clientname|connectionname.commandname|messagename ←
DRC.Send {clientname[.commandname|.messagename]|connectionname}
{data} [close]

where:
l rc is the return code (see Section A.1)
l clientname[.commandname]|connectionname is dependent on themode

whether a full name is supplied or auto-generation is required:
o for client objects and server objects in Textmode or Rawmode:

n if clientname is supplied, Conga auto-generates a messagename
and returns it as the second element of the result in the format
clientname.messagename.

n if connectionname is supplied, Conga auto-generates a
messagename and returns it as the second element of the result in
the format connectionname.messagename.

n if clientname.messagename or connectionname.messagename
is supplied, Conga returns it unaltered as the second element of the
result.

messagename is not the name of a message object.

revision20170627_300 55

Conga User Guide

o for client objects in Commandmode:
n if clientname is supplied, Conga auto-generates a commandname

and returns it as the second element of the result in the format
clientname.commandname.

n if clientname.commandname is supplied, Conga returns it
unaltered as the second element of the result.

l data is the array to send to the peer server/client object.
l close indicates the action to take after sending the data to the peer object.

Possible values are:
o 0 : no action taken. This is the default value.
o 1 : the connection will be closed.
o 2 : the connection remains open, the command object will be closed – only

relevant for client objects in Commandmode

Examples:

A client object in Command mode:

To create a command with an auto-generated name below client C1 and send an APL
array to the server:

DRC.Send 'C1' ('PlusReduce' (⍳10))
0 C1.Auto00000000

A server object in Command mode:

Not applicable – server objects in Commandmode use the DRC.Respond function rather
than the DRC.Send function (see Section A.16).

A server or client object in Rawmode or Text mode:

To send the text 'Bye' on client C1 and subsequently close the connection:

DRC.Send 'C1' ('Bye', ⎕UCS 13) 1
0 C1.Auto00000001

Related functions:
l DRC.Progress – see Section A.15
l DRC.Respond – see Section A.16
l DRC.Wait – see Section A.23

revision20170627_300 56

Conga User Guide

A.18 Function: DRC.ServerAuth
Integrated Windows Authentication is only available on a Microsoft Windows
domain – both client and server must be running on Microsoft Windows.

Purpose: Performs server-side Integrated Windows Authentication (IWA).

Syntax: rc ← DRC.ServerAuth {connectionname}

where:
l rc is the return code (see Section A.1)
l connectionname is the name of the connection through which a

Command-mode server responds to a Command-mode client.

DRC.ClientAuth (see Section A.3) and DRC.ServerAuthmust be run at the
same time.

A.19 Function: DRC.SetProp
Purpose: Updates the qualified properties of the specified Conga object.

Syntax: DRC.SetProp {objectname} {property} {value}

where:
l objectname is the Conga object for which to set a new property value
l property is the name of the property to set
l value is the value to set the specified property to

The property values that can be set depend on the type of the specified Conga object;
they are described in Table A-2. Some of these values can also be specified when a
server/client is created using the DRC.Srv/DRC.Clt function (see Section A.20 and
Section A.5 respectively). The current values can be retrieved using the DRC.GetProp
function (see Section A.12).

revision20170627_300 57

Conga User Guide

Property Object Type Description/Syntax

KeepAlive
Client,
Server,
Connection

The frequency with which periodic heartbeat messages
are sent to verify that the connection is live. A 2-element
vector in which:

l [1] is the time (in ms) to wait before sending the
first heartbeat

l [2] is the time interval (in ms) between
heartbeats

Protocol Root

The communication protocol to use. Possible values are:
l IPv4 : use the IPv4 connection protocol; if this is

not possible then generate an error
l IPv6 : use the IPv6 connection protocol; if this is

not possible then generate an error
l IP : use the IPv6 connection protocol; if this is not

possible then use the IPv4 connection protocol
The default is IP.
This property value is inherited when creating a
connection unless a different value is specified.

ReadyStrategy
Root,
Server

The strategy by which the next connection to process is
determined when more than one connection has
received data. Possible values are:

l 0 : "Use First" – process the first connection in the
object tree (for information on the object tree,
see Section A.21). This approach can result in
connections not being serviced.

l 1 : "Round Robin" – process the first connection
in the object tree after the one that has just been
processed.

l 2: "Oldest First" – process the connection that has
been waiting for the longest time. This is
considered to be the least biased approach but
consumes slightly more CPU than strategy 1.

The default is 2.

RootCertDir Root Full path to (and name of) the directory that contains
Certificate Authority root certificates.

Table A-2: Properties that can be set by the DRC.SetProp function

revision20170627_300 58

Conga User Guide

Examples:

DRC.SetProp '.' 'RootCertDir' 'C:\..\TestCertificates\ca'
0

DRC.SetProp 'C1' 'KeepAlive' (1000 2000)
0

A.20 Function: DRC.Srv
Purpose: Creates a Conga server to listen on a specified port. If certificate information is
provided, then a secure server is created.

Syntax: rc name ← DRC.Srv {Name} [Address] [Port] [Mode]
[BufferSize] [SSLValidation] [EOM] [IgnoreCase] [Protocol]
[PublicCertData] [PrivateKeyFile] [PrivateKeyPass]
[PublicCertFile] [PublicCertPass] [PrivateKeyData] [Priority]
[Magic] [X509]

where:
l rc is the return code (see Section A.1)
l name is the name of the Conga server that has been created. If no Namewas

specified ('') then this is auto-generated.
l Name is the name of the Conga server to create. If '' is specified rather than a

specific name, then the namewill be auto-generated.
l Address is the address of the server
l Port is the port number that the server will listen on
l Mode is the connection protocol (see Section 4.1.3). Possible values are Command,

Text, Raw, BlkText or BlkRaw. The default is Command.
l BufferSize is themaximum size (in bytes) allocated to the buffer that receives

data transmissions. The default is 16,384. Only valid for clients in
Raw/Text/BlkRaw/BlkTextmode, not those in Commandmode.

l SSLValidation is the sum of the relevant TLS flags (see Appendix C). Only valid
when creating a secure client (see Section 5.3).

l EOM is a simple character vector or a vector of vectors indicating the termination
string(s) (see Section 4.1.3). Only valid for clients in Raw/Textmode, not those in
BlkRaw/BlkText/Commandmode.

revision20170627_300 59

Conga User Guide

l IgnoreCase is a Boolean indicating whether searches for the termination string
defined in EOM are case sensitive. Possible values are:

o 0 : do not ignore case when searching for termination strings
o 1 : ignore case when searching for termination strings

Only valid for clients in Raw/Textmode, not those in BlkRaw/BlkText/Command
mode

l Protocol is the communication protocol to use. Possible values are:
o IPv4 : use the IPv4 connection protocol; if this is not possible then generate

an error
o IPv6 : use the IPv6 connection protocol; if this is not possible then generate

an error
o IP : use the IPv6 connection protocol; if this is not possible then use the IPv4

connection protocol.

The default is to inherit the protocol defined for the root object.

l PublicCertData has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure server (see Section 5.4).

l PrivateKeyFile has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure server (see Section 5.4).

l PrivateKeyPass has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure server (see Section 5.4).

l PublicCertFile has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure server (see Section 5.4).

l PublicCertPass has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure server (see Section 5.4).

l PrivateKeyData has been deprecated but is retained for backwards
compatibility. Only valid when creating a secure server (see Section 5.4).

l Priority is the GnuTLS priority string (for complete documentation of this, see
http://www.gnutls.org/manual/gnutls.html#Priority-Strings).

l Magic is a 32-bit integer used to check that the data has not been corrupted. Only
valid for servers in BlkRaw/BlkTextmode, not those in Raw/Text/Commandmode.

l X509 is a reference to an instance of the X509Cert class. Only valid when creating a
secure server (see Section 5.4).

The [PublicCertData], [PrivateKeyFile], [PrivateKeyPass],
[PublicCertFile], [PublicCertPass] and [PrivateKeyData] arguments are
mutally exclusive with the [X509] argument.

revision20170627_300 60

Conga User Guide

http://www.gnutls.org/manual/gnutls.html#Priority-Strings

Examples:

To create APLRPC, a Commandmode server listening on port 5050:
DRC.Srv 'APLRPC' '' 5050 'Command'

0 APLRPC

To create a secure Commandmode server on port 5050 of the local machine using the
named certificate/key files and a TLS flag value of 64 (RequestClientCertificate):

cert←⊃DRC.X509Cert.ReadCertFromFile 'path/server-cert.pem'
cert.KeyOrigin←⊂'DER' 'path/server-key.pem'
certs←('X509' cert)('SSLValidation' 64)
DRC.Srv 'APLRPC' '' 5050 'Command',certs

0 APLRPC

To create a Textmode server (with an auto-generated name) listening on port 23, with a
maximum buffer size of 1000 characters and a termination sequence of <CR>:

DRC.Srv '' '' 23 'Text' 1000 ('EOM' (⎕UCS 13))
0 SRV00000000

Related function:
l DRC.Clt – see Section A.5

A.21 Function: DRC.Tree
Purpose: Returns information about the specified Conga object and all of its first
generation children (or all existing Conga objects if the specified object is root).

Syntax: rc tree ← DRC.Tree {objectname}

where:
l rc is the return code (see Section A.1)
l tree is a 2-element vector in which the first element describes the specified object

and the second element is a vector of trees describing each of its first-generation
children (the second element is empty if the specified object has no children and it
contains all existing Conga objects if the specified object is root).

l objectname is the name of the Conga object to describe.

For all objects, the description starts with the following elements:
l [1] is the name of the object
l [2] is the object's type (see Section 4.1.1)
l [3] is the object's state (see Section 4.1.2)

revision20170627_300 61

Conga User Guide

Some types of Conga object also include additional elements:
l Conga objects of type 0 (root):

o [4] is the version of Conga
o [5] is the thread count

l Conga objects of type 4 (commands) or 5 (messages):
o [4] is the size of the object that has been processed so far (in bytes)
o [5] is the size of the object that has not yet been processed (in bytes)

Example:

DRC.Srv 'S1' '' 5000
0 S1

DRC.Clt 'C1' 'localhost' 5000
0 C1

DRC.Wait 'S1' 100
0 S1.CON00000000 Connect 0

(rc (root subtree)) ← DRC.Tree '.'

]DISP root
┌→┬─┬─┬───┬─┐
│.│0│2│Conga.Dynamic.Link.Library 2.7.1020.0 Copyright....│1│
└⊖┴─┴─┴───┴─┘

This elements in this result indicate that:
l [1] : The root object has no name (element is empty)
l [2] : The object type code is 0 (Root)
l [3] : The object state code is 2 (RootInit)
l [4] : The version number (and additional information) is available
l [5] : The number of semaphores currently in use for thread synchronisation is 1

]DISP subtree
┌→─────────────────────────────────┬────────────┐
│┌→───────┬───────────────────────┐│┌→───────┬─┐│
││┌→─┬─┬─┐│┌→────────────────────┐│││┌→─┬─┬─┐│0││
│││S1│1│3│││┌→────────────────┬─┐│││││C1│2│4││ ││
││└─→┴─┴─┘│││┌→──────────┬─┬─┐│0│││││└─→┴─┴─┘│ ││
││ ││││CON00000000│3│4││ ││││└───────→┴⊖┘│
││ │││└──────────→┴─┴─┘│ ││││ │
││ ││└────────────────→┴⊖┘│││ │
││ │└────────────────────→┘││ │
│└───────→┴──────────────────────→┘│ │
└─────────────────────────────────→┴───────────→┘

revision20170627_300 62

Conga User Guide

The elements in this result indicate that there are two first-level children of the root:
l Conga object S1:

o its object type code is 1 (server)
o it is in state 3 (Listen)
o it has a child object, CON00000000:

n its object type is 3 (Connection)
n it is in state 4 (Connected)

l Conga object C1:
o its object type code is 2 (client)
o it is in state 4 (Connected)

Similar functions:
l DRC.Describe – see Section A.6
l DRC.Names – see Section A.14

A.22 Function: DRC.Version
Purpose: Returns the Conga version number.

Syntax: ver ← DRC.Version

where:
l ver is a 3-element vector in which:

o [1] is themajor version number
o [2] is theminor version number
o [3] is the build number

Example:

DRC.Version
2 6 936

A.23 Function: DRC.Wait
Purpose:Waits for an event to occur.

Syntax: rc objectname event data ← DRC.Wait
{clientname|servername|connectionname|commandname} [timeout]

where:
l rc is the return code (a return code of 100 indicates a timeout, for other return

codes see Section A.1)

revision20170627_300 63

Conga User Guide

l objectname is the name of the object on which the event occurred.
l event is the name of the event that occurred– see Table A-3
l data is the received data.
l clientname|servername|connectionname|commandname is the name of the

object waiting for an event:
o if a servername or connectionname name is specified, the DRC.Wait

function will report events on the named object or any of its children.
o If a Command-mode client is waiting on a specific command, the full

commandname can be specified.
l timeout is the number ofms to wait before timing out. The default is 1,000.

Event Description

Block
Text or Rawmode only: A block of data was received and the connection
is still open.

BlockLast
Text or Rawmode only: A block of data was received and the connection
was closed; no more data is expected. If the connection is closed while it
is inactive, a BlockLast event will be reported with empty data.

Connect
The Conga object has been created but has not yet participated in any
data transmissions.

Error An error occurred.

Progress
Command-mode client only: The server transmitted data using the
DRC.Progress function.

Receive Commandmode only: Data has been received.

Table A-3: Types of event that can occur

Examples:

DRC.Srv 'S1' '' 5000
0 S1

DRC.Clt 'C1' 'localhost' 5000
0 C1

DRC.Wait 'S1' 5000
0 S1.CON00000000 Connect 0

DRC.Send 'C1.fakename' 'Testing'
0 C1.fakename

revision20170627_300 64

Conga User Guide

DRC.Wait 'S1' 5000
0 S1.CON00000000.fakename Receive Testing

In Commandmode, command names are carried over to the server.

Related functions:
l DRC.Progress – see Section A.15
l DRC.Respond – see Section A.16
l DRC.Send – see Section A.17

A.24 Class: DRC.X509Cert
Purpose: Provides a container to encapsulate X.509-style certificates. Dyalog Ltd
recommends that this class is used when providing secure communications.

#.DRC.X509Cert.[X509Cert] is an instance of the X509Cert class.

Syntax – Shared Methods: These read certificates from various sources; they are not
instance-specific.

To return certificate instances of all the certificates in a specified file:
certs ← DRC.X509Cert.ReadCertFromFile {filename}

To return certificate instances of all the certificates in a specified directory that match the
specified pattern:
certs ← DRC.X509Cert.ReadCertFromFolder {pathname}

To return certificate instances of all the certificates in the specified certificate store:
certs ← DRC.X509Cert.ReadCertFromStore {storename}

where:
l certs is a vector of certificate instances where each element is of type

DRC.X509Cert.
l filename is a certificate file name as a character vector, for example,
'server-cert.pem'. Although it is a single file name, the file can contain
multiple certificates.

l pathname is a character vector specifying the path to the directory that contains
certificate files. It can be fully-qualified or relative to the current working directory.
Wildcard characters can be used, for example, 'c:\mycerts*.pem', although if files
match the pattern but are not valid certificate files then certswill be an empty
vector.

revision20170627_300 65

Conga User Guide

l storename is a single certificate store name as a character vector (a list of all
certificate store names is returned by DRC.Certs 'ListMSStore' – see Section
A.2).

Syntax – Instance Methods: These act on specific certificate instances.

To verify whether the certificate is structurally valid:

bool ← #.DRC.X509Cert.[X509Cert].IsCert

To return the certificate chain for the certificate:

certs ← #.DRC.X509Cert.[X509Cert].Chain

To save the certificate instance to a file:

result ← [name] #.DRC.X509Cert.[X509Cert].Save path

To follow the certificate chain from the current certificate until a root certificate is found
and, if possible, updates the DRC.GetProp function's PeerCert property so that the
certificate chain is complete:

chain ← #.DRC.X509Cert.[X509Cert].CopyCertificateChainFromStore

where:
l bool is a Boolean indicating whether the certificate has a valid structure:

o 0 : the certificate does not have a valid structure
o 1 : the certificate has a valid structure

l certs is a vector of certificate instances where each element is of type
DRC.X509Cert

l result indicates whether the file saved successfully:
o 0 : the file saved successfully
o ⎕EN : the file did not save successfully

l name is the name under which to save the file. If not specified, a name is built from
the instance's Subject.

l path is a character vector specifying the path to the directory in which to save the
certificate file. It can be fully-qualified or relative to the current working directory.

l chain is the number of certificates in the chain (including the calling instance and
the root certificate).

revision20170627_300 66

Conga User Guide

Examples:

Verify whether john (an instance of the X509Cert class in the Samples namespace) is a
structurally valid certificate:

Samples.john.IsCert
1

Return the issuer information for john (an instance of the X509Cert class in the Samples
namespace):

(Samples.john.Chain).Formatted.Issuer
O=Test CA,CN=Test CA

A.24.1 Instances of the DRC.X509Cert Class

Each instance of the DRC.X509Cert class has the properties detailed in Table A-4.

Property Description

Cert Integer vector of raw certificate data.

CertOrigin

For certificates read from a certificate store this is:
'MSStore' storename
For certificates read from a file this is:
'DER' and a fully qualified filename
For example:
'DER'
C:\apps\dyalog141U64\TestCertificates\client\john-
cert.pem

Elements
Extended
Formatted

Elements, Extended, and Formatted are namespaces that
contain specific information about the certificate. Elements
contains the information in a basic format, while Formatted and
Extended have the same elements in a more human-readable
format (Extendedmay, in some instances, contain additional
information).

Table A-4: Properties of each instance of the DRC.X509Cert class

revision20170627_300 67

Conga User Guide

Property Description

KeyOrigin

For keys read from a certificate store this is:
'MSStore' storename
For keys read from a file this is:
'DER' and a fully qualified filename
For example:
'DER'
C:\apps\dyalog141U64\TestCertificates\client\john-
key.pem

LDRC Internal reference to the local DRC namespace.

ParentCert
An instance of the certificate directly above this one in the
certificate chain. Only relevant if this certificate is part of a certificate
chain but not at the top of the chain.

UseMSStoreAPI

Boolean indicating which API to use to decode certificate
information. Possible values are:

l 0 : Use the GnuTLS API
l 1 Use theMicrosoft certificate store API

For applications that could be deployed on an operating
system other than Microsoft Windows, the GnuTLS API
should be used.

Table A-4: Properties of each instance of the DRC.X509Cert class (continued)

Not all certificates have values for all of the elements that are contained in the Elements,
Extended, and Formatted properties, and some elements aremore useful than others.
Table A-5 lists some of themore useful of the possible elements (it is not a comprehensive
reference of X.509 certificate structure).

Property Description

AlgorithmID The cryptographic algorithm used to generate the signature, for
example, RSA-SHA1 and DSA-SIGN.

Description A text description of the certificate.

Table A-5: Some of the elements that can comprise the Elements, Extended, and
Formatted properties of each instance of the DRC.X509Cert class

revision20170627_300 68

Conga User Guide

Property Description

Issuer
The issuer of the certificate. Useful when validating certificate chains (the
Issuer of a certificate should match the Subject of its parent certificate).
Self-signed certificates have identical Issuer and Subject elements.

Key The certificate's key in Boolean format.

KeyHex The certificate's key in hexadecimal format.

KeyID The certificate's key's cryptosystem, for example, RSA or DHE.

KeyLength The length of the certificate's key (in bits). Maximum value is 16,384.

SerialNo A number that uniquely identifies the certificate and is issued by the
certification authority.

Subject

The subject of the certificate. Useful when validating certificate chains
(the Subject of a certificate should match the Issuer of its child
certificate). Self-signed certificates have identical Issuer and Subject
elements.

ValidFrom
ValidTo

Together, these two elements define the period of validity for the
certificate.

Version The version of the X.509 standard applied when creating the certificate
(currently this is 3).

Table A-5: Some of the elements that can comprise the Elements, Extended, and
Formatted properties of each instance of the DRC.X509Cert class (continued)

A.25 Operator: Samples.HTTPCmd
Purpose: Issues the specified HTTP command and waits for the result. Useful for
interacting with RESTful web services.

Syntax: rc rcvhdrs data peercert ← [certs] (cmd Samples.HTTPCmd)
{url [params]|urlwithparams} [sendhdrs]

where:
l rc is the return code (a return code of 100 indicates a timeout, for other return

codes see Section A.1)

revision20170627_300 69

Conga User Guide

l rcvhdrs is a 2-column matrix of HTTP headers received from the server, in which:
o [;1] is the header name, for example, content-length.
o [;2] is the header value, for example, 8193.

l data is the data received from the server.
l peercert is the server's certificate. Only returned when interacting with a secure

server (see Section 5.4).
l certs is the client's certificate (that is, the certificate for themachine calling the

operator). Only valid when interacting with a secure server (see Section 5.4).
Comprises [X509 [SSLflags [priority]]]where:

o X509 is a reference to an instance of the X509Cert class.
o SSL is the sum of the relevant TLS flags (see Appendix C). Only valid when

interacting with a secure server (see Section 5.4).
o priority is the GnuTLS priority string (for complete documentation of this,

see http://www.gnutls.org/manual/gnutls.html#Priority-Strings).
l cmd is the HTTP command to issue. Possible commands include 'GET', 'POST',
'DELETE' and 'PUT'; the specific commands that can be used are determined by
the server.

l url is the URL to which the command is to be issued. Must be specified in the
format http[s]://www.abc.com.

l params is a namespace or URL-encoded string specifying additional query
parameters with which to filter the URL.

l urlwithparams is the URL to which the command is to be issued, specified in the
format http[s]://www.abc.com, appended with a ? character and a query string of
<name>=<value> parameters separated by & characters.

l sendhdrs is any additional HTTP request headers. Specified as either a vector of 2-
element (name-value) character vectors or a 2-column matrix of character vectors
of names and values. For example, to be able to accept a gzip-compressed
response, the server needs to be sent a header of 1 2⍴'Accept-Encoding'
'gzip'.

Examples:

For a GET command, parameters can be passed either as a part of the URL or separately.
This means that:

url←'http://graphical.weather.gov/xml/sample_products/
browser_interface/ndfdBrowserClientByDay.php'

(params←⎕NS '').(zipCodeList format numDays)←14586 '24+hourly' 7

revision20170627_300 70

Conga User Guide

http://www.gnutls.org/manual/gnutls.html#Priority-Strings

('GET' Samples.HTTPCmd) url params

returns the same result as:

urlWithParams←'http://graphical.weather.gov/xml/sample_products/
browser_interface/ndfdBrowserClientByDay.php?zipCodeList=14586&
format=24+hourly&numDays=7'

('GET' Samples.HTTPCmd) urlWithParams

A.26 Function: Samples.HTTPGet
Purpose: Retrieves the contents of a web page from an internet site.

Syntax: result ← [certs] Samples.HTTPGet {'url'}

where:
l result comprises 3 elements:

o the return code (see Section A.1)
o HTTP headers returned as a 2-column matrix of attribute names and values.

Browsers use this information to determine how to encode/decode data
and provide other functionality to the end user

o data returned as a character vector
l certs is the client's certificate (that is, the certificate for themachine calling the

operator). Only valid when interacting with a secure server (see Section 5.4).
Comprises [X509 [SSLflags [priority]]]where:

o X509 is a reference to an instance of the X509Cert class.
o SSL is the sum of the relevant TLS flags (see Appendix C). Only valid when

interacting with a secure server (see Section 5.4).
o priority is the GnuTLS priority string (for complete documentation of this,

see http://www.gnutls.org/manual/gnutls.html#Priority-Strings).

If the server does not require a client certificate, then an empty left argument ''
can be provided.

l url is a character vector specifying the complete URL of the web page whose
contents are to be retrieved.

Example:

z←Samples.HTTPGet 'http://www.dyalog.com/news.htm'

revision20170627_300 71

Conga User Guide

http://www.gnutls.org/manual/gnutls.html#Priority-Strings

Looking at each element of the result in turn:
1⊃z

0

2⊃z
http/1.1 200 ok
date Tue, 03 Nov 2015 12:06:38 GMT
server Apache/2.2.22 (Ubuntu)
x-powered-by PHP/5.3.10-1ubuntu3.19
set-cookie CMSSESSID7d7e905d=53n9dkaiqpuorpdsfp5sto29c3;
path=/
expires Mon, 26 Jul 1997 05:00:00 GMT
cache-control no-store, no-cache, must-revalidate
last-modified Tue, 03 Nov 2015 12:06:38 GMT
cache-control post-check=0, pre-check=0
pragma no-cache
vary Accept-Encoding
transfer-encoding chunked
content-type text/html; charset=utf-8

⍴3⊃z
16511

60↑3⊃z
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//E

If the Content-Type HTTP header specified charset=utf-8, then the
Samples.HTTPGet function will perform the necessary decoding from UTF-8.

The Samples.HTTPGet function also supports the retrieval of web pages that have been
protected using basic authentication; in this situation, the URL passed to the function
must include the user ID and password information. For example:

result←Samples.HTTPGet 'http://user:pass@www.secret.com'

The Samples.HTTPGet function can retrieve secure web pages; the information that
must be supplied to the function to enable it to make a secure connection depends on
whether the server requires a client certificate:

l If the server requires a client certificate, then a left argument containing the X509,
SSLValidation and Priority parameters for the connection must be provided
(see Section A.5 for a description of these parameters).

l If the server does not require a client certificate, then do one of the following:
o provide an empty left argument ''.
o prefix the URL with https rather than http.

revision20170627_300 72

Conga User Guide

When retrieving secure web pages, the result vector includes a fourth element comprising
certificate information for the server.

A.27 Function: Samples.TestFTPClient
Purpose: Uses the FTPClient class to connect to ftp.mirrorservice.org and accesses the
file pub/FreeBSD/README.TXT from this website, counting and returning the number of
characters in this file.

Syntax: number ← Samples.TestFTPClient

where:
l number is the count of characters in the file

Example:

Samples.TestFTPClient
pub/FreeBSD/README.TXT from ftp.mirrorservice.org:

4259 characters read

A.28 Function: Samples.TestSecureWebClient
Purpose: Uses the Samples.HTTPGet function to test retrieval of the contents of the
secure version of Dyalog Ltd's website (https://www.dyalog.com/).

Syntax: result ← {certs} Samples.TestSecureWebClient {'url'}

where:

result comprises 3 elements:
l the return code (see Section A.1)
l HTTP headers returned as a 2-column matrix of attribute names and values.

Browsers use this information to determine how to encode/decode data
and provide other functionality to the end user

l data returned as a character vector
l certs is certificate information:

o if the server requires a client certificate, then a left argument containing the
X509, SSLValidation and Priority parameters for the connection
must be provided.

o if the server does not require a client certificate, then an empty left
argument '' can be provided.

revision20170627_300 73

Conga User Guide

ftp://ftp.mirrorservice.org/
https://www.dyalog.com/

l url is a character vector specifying the complete URL of the web page whose
contents are to be retrieved.

Example:

z←Samples.TestSecureWebClient
'https://www.dyalog.com/news.htm'

Looking at each element of the result in turn:
1⊃z

0

2⊃z
http/1.1 200 ok
date Tue, 03 Nov 2015 12:06:38 GMT
server Apache/2.2.22 (Ubuntu)
x-powered-by PHP/5.3.10-1ubuntu3.19
set-cookie CMSSESSID7d7e905d=53n9dkaiqpuorpdsfp5sto29c3;
path=/
expires Mon, 26 Jul 1997 05:00:00 GMT
cache-control no-store, no-cache, must-revalidate
last-modified Tue, 03 Nov 2015 12:06:38 GMT
cache-control post-check=0, pre-check=0
pragma no-cache
vary Accept-Encoding
transfer-encoding chunked
content-type text/html; charset=utf-8

⍴3⊃z
16511

60↑3⊃z
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//E

If the Content-Type HTTP header specified charset=utf-8, then the
Samples.TestSecureWebClient function will perform the necessary decoding from
UTF-8.

The Samples.TestSecureWebClient function also supports the retrieval of web pages
that have been protected using basic authentication; in this situation, the URL passed to
the function must include the user ID and password information. For example:

result←Samples.TestSecureWebClient
'https://user:pass@www.secret.com'

revision20170627_300 74

Conga User Guide

A.29 Function: Samples.TestWebClient
Purpose: Uses the Samples.HTTPGet function to test retrieval of the contents of Dyalog
Ltd's website (http://www.dyalog.com/).

Syntax: result ← Samples.TestWebClient {'url'}

where:

result comprises 3 elements:
l the return code (see Section A.1)
l HTTP headers returned as a 2-column matrix of attribute names and values.

Browsers use this information to determine how to encode/decode data
and provide other functionality to the end user

l data returned as a character vector
l url is a character vector specifying the complete URL of the web page whose

contents are to be retrieved.

Example:

z←Samples.TestWebClient 'http://www.dyalog.com/news.htm'

Looking at each element of the result in turn:
1⊃z

0

2⊃z
http/1.1 200 ok
date Tue, 03 Nov 2015 12:06:38 GMT
server Apache/2.2.22 (Ubuntu)
x-powered-by PHP/5.3.10-1ubuntu3.19
set-cookie CMSSESSID7d7e905d=53n9dkaiqpuorpdsfp5sto29c3;
path=/
expires Mon, 26 Jul 1997 05:00:00 GMT
cache-control no-store, no-cache, must-revalidate
last-modified Tue, 03 Nov 2015 12:06:38 GMT
cache-control post-check=0, pre-check=0
pragma no-cache
vary Accept-Encoding
transfer-encoding chunked
content-type text/html; charset=utf-8

⍴3⊃z
16511

revision20170627_300 75

Conga User Guide

http://www.dyalog.com/

60↑3⊃z
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//E

If the Content-Type HTTP header specified charset=utf-8, then the
Samples.TestWebClient function will perform the necessary decoding from UTF-8.

The Samples.TestWebClient function also supports the retrieval of web pages that
have been protected using basic authentication; in this situation, the URL passed to the
function must include the user ID and password information. For example:

result←Samples.TestWebClient
'http://user:pass@www.secret.com'

A.30 Function: WebServer.Run
Purpose: Launches a web server.

Syntax: rc ← WebServer.Run {path|functionname} {port} {servername}

where:
l rc is the return code (see Section A.1)
l path|functionname is one of the following:

o path – to present a flat set of HTML files as a webpage, specify the path to
the root directory of the HTML files.

o functionname – to execute APL for each page request, specify the name of
the function in the active workspace that will intercept requests and
manufacture output.

l port is the port number on which the server will listen
l servername is the name of the Conga server object to create

Example:

WebServer.Run 'c:\temp\htmlfiler\' 80 'http'
0

revision20170627_300 76

Conga User Guide

B Certificates

Many different file formats can be used for storing X.509 certificates, including PEM, DER,
PFX, P7C and P12; the popularity of these formats varies between platforms. Conga
supports the PEM and DER format files on all platforms; these have file extensions .pem
and .der respectively. Certificates in other formats can be used after they have been
converted to PEM or DER format files; this conversion can be performed using open
source tools such as GnuTLS and OpenSSL (see the guide at
http://gagravarr.org/writing/openssl-certs/general.shtml for information on converting
between formats using OpenSSL).

B.1 PEM File Format
Files that have the PEM file format start with:

-----BEGIN CERTIFICATE-----

and end with:

-----END CERTIFICATE-----

They contain a base64-encoded version of the certificates and do not include any control
characters.

The secure communications library GnuTLS (http://www.gnu.org/software/gnutls/)
comes with a command line tool called certtool that can be used for creating certificates,
keys and certificate requests as .pem files. It is documented at
http://www.gnu.org/software/gnutls/manual/html_node/Invoking-certtool.html.

B.2 Generating Certificates and Keys
This is not supported on the AIX operating system.

revision20170627_300 77

Conga User Guide

http://gagravarr.org/writing/openssl-certs/general.shtml
http://www.gnu.org/software/gnutls/
http://www.gnu.org/software/gnutls/manual/html_node/Invoking-certtool.html

The following example creates a set of certificates similar to the test certificates provided
in the [DYALOG]/TestCertificates directory. This example is operating-system-
independent and uses the GnuTLS open source secure communications library (see Section
B.1).

The CertTool namespace includes code that checks whether certtool.exe exists in the
location specified by EXEC. It then checks the version number of certtool.exe and signals
a DOMAIN ERROR if it is less than 3.4.0 (version 3.4.0 introduced support for PKCS#7 and
PKCS#12 encoded certificates).

To create a set of example certificates

1. Download and unzip the latest version of the GnuTLS secure communications
library from ftp://ftp.gnutls.org/gcrypt/gnutls/.

Download and unzip the latest version of the GnuTLS secure
communications library from your distribution's repository rather than
using the above link.

2. Start a Dyalog Session and load the CertTool namespace into the workspace. For
example:
]LOAD [DYALOG]/Samples/Certificates/CertTool.dyalog

3. Edit the values of the following names in the CertTool namespace:

EXEC

(in the Init function, under the appropriate operating system)
Fully-qualified path to the certtool.exe file in the bin directory of the
unzipped GnuTLS secure communications library.

The certtool.exe file is assumed to be on the path (this is true if
it has been installed from the distribution's installation media or
repositories).

For example: 'c:\apps\gnutls-3.4.7\bin\certtool.exe'

TARGET

(in the Init function, under the appropriate operating system)
Fully-qualified path to the directory in which to store the generated
certificates and files.
For example: 'c:\temp\TestCertificates\'

revision20170627_300 78

Conga User Guide

ftp://ftp.gnutls.org/gcrypt/gnutls/

SERIAL

(in the Init function)
Serial number of the first certificate generated. The other four
certificates that are generated are assigned numbers related to this
using the formula SERIAL+7×¯1+⍳5 (the 7 can be changed in the
CommonAttr function, line [3]).
For example: 100

C

(in the Init function)
Country in which the certificate is to be produced. This will be included
in the subject information of the generated certificates.
For example: UK

O

(in the Init function)
Organisation that is producing the certificate. This will be included in
the subject information of the generated certificates.
For example: DyalogLtd

OU

(in the Init function)
Department within the Organisation that is producing the certificate.
This will be included in the subject information of the generated
certificates.
For example: Test

ST

(in the Init function)
State/county/district in which the Organisation is located. This will be
included in the subject information of the generated certificates.
For example: Hampshire

CN

(in the Examples function)
The common name used on the certificate.
For client certificates this is usually the name of a client or person.
For example: Ken Iverson

For server certificates this is usually the DNS name of the server.
For example: www.dyalog.com

4. Run the CertTool.Examples function.
The directory specified by TARGET is created and populated with further directories
and files.

revision20170627_300 79

Conga User Guide

The generated output is as follows:
l CA directory:

o ca-cert.pem
The public certificate for the example CA. Used to authenticate client/server
certificates.

o caconf.cfg
Information about the CA certificate's properties.

o ca-key.pem
The private key for the example CA. Used to sign client/server and CA
certificates.

l client directory – four files for each ClientCert name defined in the Examples
function. In this example, these are John Doe and Jane Doe (see lines [17] and
[18] in the Examples function):

o <name>.cer
A password-encrypted ASCII file containing the client's key and certificate in
PKCS #7 file format.

o <name>.p12
A binary file containing the client's key and certificate in PKCS #12 file format.

o <name>-cert.pem
With <name>-key.pem, forms a client certificate's certificate/key pair.

o <name>-key.pem
With <name>-cert.pem, forms a client certificate's certificate/key pair.

l server directory – four files for each ServerCert name defined in the Examples
function. In this example, these are localhost and myserver (see lines [15]
and [16] in the Examples function):

o <name>.cer
A password-encrypted ASCII file containing the server's key and certificate in
PKCS #7 file format.

o <name>.p12
A binary file containing the server's key and certificate in PKCS #12 file
format.

o <name>-cert.pem
With localhost-key.pem, forms a server certificate's certificate/key pair.

o <name>-key.pem
With localhost-cert.pem, forms a server certificate's certificate/key pair.

revision20170627_300 80

Conga User Guide

C TLS Flags

TLS flags are employed as part of the certificate checking process; they determine whether
a secure client or server can connect with a peer that does not have a valid certificate.

The code numbers of the TLS flags described in Table C-1 can be added together and
passed to the DRC.Clt / DRC.Srv functions to control the certificate checking process. If
you do not require any of these flags, then the SSLValidation parameter of these
functions should be set to 0.

Code Name Description

1 CertAcceptIfIssuerUnknown Accept the peer certificate even if the issuer
(root certificate) cannot be found.

2 CertAcceptIfSignerNotCA
Accept the peer certificate even if it has been
signed by a certificate not in the trusted root
certificates' directory.

4 CertAcceptIfNotActivated Accept the peer certificate even if it is not yet
valid (according to its valid from information).

8 CertAcceptIfExpired Accept the peer certificate even if it has
expired (according to its valid to information).

16 CertAcceptIfIncorrectHostName
Accept the peer certificate even if its hostname
does not match the one it was trying to
connect to.

32 CertAcceptWithoutValidating
Accept the peer certificate without checking it
(useful if the certificate is to be checked
manually – see Section A.12).

Table C-1: TLS Flags

revision20170627_300 81

Conga User Guide

Code Name Description

64 RequestClientCertificate
Only valid for a server; asks the client for a
certificate but allows connections even if the
client does not provide one.

128 RequireClientCertificate

Only valid for a server; asks the client for a
certificate and refuses the connection if a valid
certificate (subject to any other flags) is not
provided by the client.

Table C-1: TLS Flags (continued)

TLS flags have the samemeanings for a server as for a client. However, for a server they
are applied each time a new connection is established whereas for a client they are only
applied when the client object is created.

revision20170627_300 82

Conga User Guide

D Conga Libraries

If an application that includes the congaworkspace is shipped, then the relevant libraries
will also need to be shipped. The libraries depend on the interpreter that is shipped with
the application – Table D-1-Table D-5 show the necessary libraries for each of the
supported combinations of operating system, edition and width.

Unicode Edition Classic Edition

64-bit
conga27x64Uni.so
libconga27ssl64.a

conga27x64.so
libconga27ssl64.a

32-bit
conga27Uni.so
libconga27ssl32.a

conga27.so
libconga27ssl32.a

Table D-1: Libraries for interpreters on the AIX operating system

Unicode Edition Classic Edition

64-bit
conga27x64Uni.so
libconga27ssl64.so

conga27x64.so
libconga27ssl64.so

32-bit
conga27Uni.so
libconga27ssl32.so

conga27.so
libconga27ssl32.so

Table D-2: Libraries for interpreters on the Linux operating system

Unicode Edition Classic Edition

64-bit
conga27x64Uni.dylib
libconga27ssl64.dylib

conga27x64.dylib
libconga27ssl64.dylib

32-bit
conga27Uni.dylib
libconga27ssl32.dylib

conga27.dylib
libconga27ssl32.dylib

Table D-3: Libraries for interpreters on the macOS operating system

revision20170627_300 83

Conga User Guide

Unicode Edition Classic Edition

64-bit
Conga27x64Uni.dll
Conga27ssl64.dll

Conga27x64.dll
Conga27ssl64.dll

32-bit
Conga27Uni.dll
Conga27ssl32.dll

Conga27.dll
Conga27ssl32.dll

Table D-4: Libraries for interpreters on the Microsoft Windows operating system

Unicode Edition Classic Edition

64-bit n/a n/a

32-bit conga27Uni.so n/a

Table D-5: Libraries for interpreters on the Raspberry Pi

revision20170627_300 84

Conga User Guide

E Error Codes

Errors can be signalled at several levels within the Conga framework, including from the
operating system, the Conga shared library or the GnuTLS library and within the APL
coded portion of Conga.

If an error is generated when running Conga, then more information on that error can be
obtained by entering:

DRC.Error {errorcode}

in the Dyalog Session.

Table E-1 details some of the errors that can be encountered and provides possible
resolutions.

Code Source Reason for Error Possible Resolution

13 UNIX
Attempted to allocate a port with
number less than 1025without
having root permission.

Either allocate a port number
above 1024 or sign on as root (see
4001⌶ in theDyalog APL
Language Reference Guide).

98 UNIX
Specified port number is already in
use.

Allocate a different port number (it
can take several minutes to de-
allocate a port before it can be
reused).

100 Conga
Timeout – nothing was received
within the specified timeout
period.

This is a normal occurrence and
should be accommodated for in
the client/server code.

1105 Conga Could not receive data. Re-establish the connection.

Table E-1: Possible error codes returned by Conga

revision20170627_300 85

Conga User Guide

Code Source Reason for Error Possible Resolution

1119 Conga
Socket closed while receiving data
(occurs when the connection is
broken mid-block transfer).

Reconnect and resend the data.

1135 Conga

Maximum block size (as defined by
the BufferSize parameter of the
DRC.Clt/DRC.Srv function)
exceeded when attempting to
send/receive data.

Increase the value of the
BufferSize parameter or chunk
the data into smaller blocks.

1201 TLS

The handshake process that sets
up a secure connection between
the client and server before the
certificates are exchanged is failing.

Ensure that the client and server
are using the same encryption
protocol and that both are using
SSL/TLS.

1202 TLS
The certificate supplied by the peer
is not valid.

Supply the TLS flag
CertAcceptWithoutValidating to
the DRC.Srv/DRC.Clt function
(see
Appendix C) to allow this
connection and examine the
certificatemanually.

1203 TLS

One or more of the specified
certificate files could not be loaded
(either the file does not exist, it
cannot be read or it is not a valid
certificate file).

Ensure that the filenames being
passed to the DRC.Clt and
DRC.Srv functions are correct,
that the files exist and that they
are valid certificate files.

1204 TLS
There was an error setting up the
TLS libraries.

Ensure that all GnuTLS files are
present and valid.

Table E-1: Possible error codes returned by Conga (continued)

revision20170627_300 86

Conga User Guide

F Change History

This appendix details the changes made at each version of Conga since the release of
Conga version 2.0.

F.1 Version 2.7
Released with Dyalog version 15.0.

This version:
l adds a new namespace, CertTools; this can be used to generate certificates.
l removes the obsolete TelnetServer and TelnetClient classes from the
congaworkspace (the associated TestTelnetServer and
TestSecureTelnetServer functions and Parser utility in the Samples
namespace are also removed).

l merges the WebServer.HttpsRunmethod into the WebServer.Runmethod.
l allows an empty left argument to be supplied to the Samples.HTTPGet function.

F.2 Version 2.6
Released with Dyalog version 14.1.

This version:
l adds support for "blocked" raw and ASCII communications modes.
l adds a new DRC.X509Cert.Savemethod that saves the current certificate to file.
l adds a new strategy option (3) to the DRC.GetProp function's ReadyStrategy

property; this selects the oldest connection but has improved performance over
strategy option 2.

l adds new HTTPCmd operator and HTTPPost function to the Samples namespace.
l removes the need to specify protocol IPv4 on machines that do not support IPv6;

in this situation, IPv4will be selected by default.

revision20170627_300 87

Conga User Guide

In addition, this version:
l when using SSL/TLS, uses theMicrosoft Windows "Trusted Root

Certification Authorities" certificate store to verify system trust if the folder
specified by the DRC.GetProp function's RootCertDir parameter
contains no certificates

l adds a new DRC.X509Cert.CopyCertificationChainFromStore
method that follows the certificate chain from the current certificate until a
root certificate is found and, if possible, updates the DRC.GetProp
function's PeerCert property so that the certificate chain is complete.

F.3 Version 2.5
Released with Dyalog version 14.0.

This version:
l incorporates a new version of the GnuTLS library to provide secure

communications using SSL/TLS – this addresses a bug (CVE-2014-0092) whereby
attackers could bypass the SSL/TLS protections.

F.4 Version 2.4
An internal update incorporating features in support of the Remote Interactive
Development Environment (RIDE).

F.5 Version 2.3
Released with Dyalog version 13.2.

This version:
l adds a new KeepAlive property to the DRC.GetProp function; this causes a

server to send periodic (heartbeat) messages to a client to determine whether the
a connection is still live.

In addition, this version:
l now supports Integrated Windows Authentication (IWA), using the domain

credentials of a Windows user for authentication. Two new functions,
DRC.ClientAuth and DRC.ServerAuth provide client and server side
IWA capabilities respectively.

revision20170627_300 88

Conga User Guide

F.6 Version 2.2
Released with Dyalog version 13.1.

This version:
l adds a new DRC.Version function that returns the current version of Conga.
l adds a new DRC.flate class that implements the deflate compression scheme

(one of several content encoding schemes used by all major web servers and
browsers to optimise the flow of data across networks) using the zlib open source
compression library (for more information on zlib, see http://zlib.net).

l adds a new option, 2, to the DRC.Send function's close parameter; this sends a
command without expecting a response. On the client side, the command is
disposed of after sending. On the server side, the command is disposed of after
receipt, thereby preventing the server from subsequently calling the
DRC.Respond function.

l adds support for deflate HTTP compression in the Samples.HTTPGet function.
l enhances the DRC.Describe function to report the GnuTLS version.

F.7 Version 2.1
Released with Dyalog version 13.0.

Version 2.1modifies how certificates are used to facilitate secure communications.
Changes to the DRC.Srv and DRC.Clt functions when using certificates mean
that Conga 2.0 applications that use certificates will require minor modification to
use Conga 2.1.

This version:
l adds a new DRC.X509Cert class that encapsulates the structure and function

necessary to use X.509 certificates with Conga. This is the recommended method
for providing certificate information to the DRC.Clt and DRC.Srv functions.

l adds a new DRC.Certs function that provides the underlying functionality used
by the DRC.X509Cert class to read and decode certificates.

l adds a new PeerCert property to the DRC.GetProp function; this returns an
X509Cert object (certificate information).

l modifies the syntax used to pass certificate information to the DRC.Srv and
DRC.Clt functions.

l adds a new strategy option (-1) to the DRC.Init function's reset parameter; this
causes Conga to reload its underlying drivers.

l enhances the Samples.HTTPGet function to accept an X509Cert object as its
(optional) left argument.

revision20170627_300 89

Conga User Guide

http://zlib.net/

l enhances the WebServer.HttpsRunmethod to accept an X509Cert object
argument.

In addition, this version:
l now reads/uses certificates located in Certificate Stores.

revision20170627_300 90

Conga User Guide

Index

C
CAs see Certificate authorities
Certificate authorities 24
Certificate chains 31
Certificate revocation lists 26
Certificate stores 26
Classes
DRC.X509Cert 65
Notation when calling 41

Compatibility with Dyalog 4
Conga object modes 10
BlkRawmode 11
BlkText mode 11
Command mode 12
Rawmode 11
Text mode 10

Conga object names 6
Conga object properties 49
Conga object states 8
Conga object types 6
Client 7
Client-Server relationship 7
Command 7
Connection 7
Message 7
Root 6
Server 7

Conga objects 6
Conga workspace 33

D
DRC return codes 41
DRC.Certs (function) 42
DRC.ClientAuth (function) 42
DRC.Close (function) 43
DRC.Clt (function) 43
DRC.Describe (function) 46
DRC.Error (function) 47
DRC.Exists (function) 47
DRC.Flate.Deflate (method) 48
DRC.Flate.Inflate (method) 48
DRC.Flate.IsAvailable (method) 49
DRC.GetProp (function) 49
DRC.Init (function) 52
DRC.Names (function) 53
DRC.Progress (function) 54
DRC.Respond (function) 54
DRC.Send (function) 55
DRC.ServerAuth (function) 57
DRC.SetProp (function) 57
DRC.Srv (function) 59
DRC.Tree (function) 61
DRC.Version (function) 63
DRC.Wait (function) 63
DRC.X509Cert (class) 65

E
Error codes 85
Event types 64
Example namespaces
RPCServer 36

revision20170627_300 91

Conga User Guide

Samples 34
TODServer 39
WebServer 35

F
Functions
DRC.Certs 42
DRC.ClientAuth 42
DRC.Close 43
DRC.Clt 43
DRC.Describe 46
DRC.Error 47
DRC.Exists 47
DRC.GetProp 49
DRC.Init 52
DRC.Names 53
DRC.Progress 54
DRC.Respond 54
DRC.Send 55
DRC.ServerAuth 57
DRC.SetProp 57
DRC.Srv 59
DRC.Tree 61
DRC.Version 63
DRC.Wait 63
Notation when calling 41
Samples.HTTPGet 71
Samples.Test* 34
Samples.TestFTPClient 73
Samples.TestSecureWebClient 73
Samples.TestWebClient 75
WebServer.Run 76
Code outline 35

I
Initialisation 4
Installation 4

L
Libraries 83

M
Methods
DRC.Flate.Deflate 48
DRC.Flate.Inflate 48
DRC.Flate.IsAvailable 49
Notation when calling 41

O
Operators
Notation when calling 41
Samples.HTTPCmd 69

R
Return codes 41

S
Samples.HTTPCmd (operator) 69
Samples.HTTPGet (function) 71
Samples.TestFTPClient (function) 73
Samples.TestSecureWebClient
(function) 73
Samples.TestWebClient (function) 75

T
TLS flags 81
Troubleshooting 85

W
WebServer.Run
Code outline 35

WebServer.Run (function) 76

revision20170627_300 92

Conga User Guide

	Preface
	1 About This Document
	1.1 Audience
	1.2 Conventions

	2 Introduction
	3 Installation
	3.1 Compatibility
	3.2 Initialisation

	4 Getting Started
	4.1 Conga Objects
	4.1.1 Conga Object Types
	4.1.2 Conga Object States
	4.1.3 Conga Object Modes

	4.2 A Simple Conga Client
	4.3 A Simple Conga Server
	4.4 Command Mode
	4.5 Parallel Commands
	4.5.1 Multi-threading

	4.6 Deflate HTTP Compression
	4.6.1 How HTTP Compression Works
	4.6.2 Deflate Compression

	5 Secure Connections
	5.1 CA Certificates
	5.2 Client and Server Certificates
	5.2.1 Certificate Stores
	5.2.2 Revocation Lists

	5.3 Creating a Secure Client
	5.4 Creating a Secure Server
	5.5 Using the DRC.X509Cert Class
	5.5.1 Certificate Chains

	6 The Conga Workspace
	6.1 Namespace: Samples
	6.1.1 Function: Samples.Test*

	6.2 Namespace: WebServer
	6.2.1 Function: WebServer.Run

	6.3 Namespace: RPCServer
	6.3.1 Function: RPCServer.Run

	6.4 Class: FTPClient
	6.5 Namespace: TODServer
	6.5.1 Function: TODServer.Run

	A Technical Reference
	A.1 DRC Return Codes
	A.2 Function: DRC.Certs
	A.3 Function: DRC.ClientAuth
	A.4 Function: DRC.Close
	A.5 Function: DRC.Clt
	A.6 Function: DRC.Describe
	A.7 Function: DRC.Error
	A.8 Function: DRC.Exists
	A.9 Method: DRC.Flate.Deflate
	A.10 Method: DRC.Flate.Inflate
	A.11 Method: DRC.Flate.IsAvailable
	A.12 Function: DRC.GetProp
	A.13 Function: DRC.Init
	A.14 Function: DRC.Names
	A.15 Function: DRC.Progress
	A.16 Function: DRC.Respond
	A.17 Function: DRC.Send
	A.18 Function: DRC.ServerAuth
	A.19 Function: DRC.SetProp
	A.20 Function: DRC.Srv
	A.21 Function: DRC.Tree
	A.22 Function: DRC.Version
	A.23 Function: DRC.Wait
	A.24 Class: DRC.X509Cert
	A.24.1 Instances of the DRC.X509Cert Class

	A.25 Operator: Samples.HTTPCmd
	A.26 Function: Samples.HTTPGet
	A.27 Function: Samples.TestFTPClient
	A.28 Function: Samples.TestSecureWebClient
	A.29 Function: Samples.TestWebClient
	A.30 Function: WebServer.Run

	B Certificates
	B.1 PEM File Format
	B.2 Generating Certificates and Keys

	C TLS Flags
	D Conga Libraries
	E Error Codes
	F Change History
	F.1 Version 2.7
	F.2 Version 2.6
	F.3 Version 2.5
	F.4 Version 2.4
	F.5 Version 2.3
	F.6 Version 2.2
	F.7 Version 2.1

	Index

